
The Lambda Protocol for
Synthesizing Trustworthy

Requirements

Larry Bernstein
Stevens Institute of Technology

Castle Point, Hoboken, NJ 07030
USA

QSE Lambda Protocol

• Prospectus
• Measurable Operational Value
• Prototyping or Modeling
• sQFD
• Schedule, Staffing, Quality Estimates
• ICED-T
• Trade-off Analysis

Trustworthy Software is:

• Safe: Does no harm
• Reliable: No crash or hang.
• Secure: No Hacking Possible

What is a Requirement?

• A property that must be exhibited by a
system to solve some problem.

• Requirements may be
– Functional providing product capabilities
– Non-Functional constraining the

implementation

System Performance Resulting from Robust
Requirements vs. Discrete Specifications

Volume

Dynamic Range

Ideal

Discrete Specifications

Agile
Requirements

Top Ten Software Risk Items
Category Risk Item
People 1. Personnel Shortfalls

2. Unrealistic Schedules and Budgets

Requirements 3. Developing the Wrong Software
Functions
4. Developing the Wrong User Interface
5. Gold Plating
6. Continuing Stream of Requirements
Changes

Externalities 7. Shortfalls in Externally-Furnished Component

8. Shortfalls in Externally-Performed Tasks

Technology 9. Real-Time Performance Shortfalls

10. Straining Computer Science Capabilities

Costs Cone of Uncertainty

Relative Cost
Range x

1.25x

1.5x

2x

4x

0.8x

0.5x

0.67x

0.25x

Project Development

Prospectus Requirements
Specifications

Architecture Implementation Accepted
Software

IOC

QSE Characteristics

• Solving the right problem the right way
• Tested against requirements.
• Certified against problem
• Bounded execution domain
• Industrial Strength Requirements for Software

Intensive Systems-of-Systems

Universal Software Engineering
Equation

Reliability (t) = ℮ -k λt

when the error rate is constant and where k
is a normalizing constant for your software
shop and

λ = Complexity/ [effectiveness x staffing]

Boundary Conditions

Reliability (0) = 1
Reliability (T) = ℮ -k λT

Reliability (∞) = 0

Software Testing Footprint

Time

Tests
Completed

Planned

Rejection
point

Tests run successfullyPoor
Module
Quality

QSE Lambda Protocol

• Prospectus
• Measurable Operational Value
• Prototyping or Modeling
• sQFD
• Schedule, Staffing, Quality Estimates
• ICED-T
• Trade-off Analysis

Prospectus

• Description of the problem domain
• Scope of solution
• Specific project goals
• Constraints on the behavior or

structure of the software:
– For example, Trustworthiness

Case Study: SchedulerPro
Prospectus

User friendly, efficient interface for students
to create and modify class schedules.

Features:
– Visual schedule creation and editing
– Schedule suggestion
– Schedule comparison view
– Monitor closed-out sections

SchedulerPro Prototype Screen

SchedulerPro Prototype Screen

SchedulerPro Notification Emails

Measurable Operational Value
SchedulerPro MOV

Reduce student withdrawals by 20%

SchedulerPro Functional Goals

Schedule Classes and Personal Time
Searching
Course Placement
Course Detail Viewing
Course Removal
Scheduling Personal Blocks
Notification (optional)
Course Suggestions (optional)

Student Directed Features

• Search available classes by:
Same professor
Similar time
Same or equivalent class but different sections

• Register and track registrations
• Color classes and arbitrary time-blocks by

user choice

SchedulerPro Nonfunctional
Requirements

• Integrate with “Web for Students’ and
existing authentication systems and avoid
incompatibilities

• Allow schedules to be saved/accessed from
a server or local file

• Provide a scaled time-accurate visual
representation of the schedule

More Non-functional requirements

• Make schedules available even if the
application is down, provided an internet
connection is available

• Perform some functions without a live
connection to the ‘Web for Students’
registrar web site

• Make compatible with all popular browsers
• Display section states and print

schedules without loss of detail

sQFD

Functions/
Features Class Filters Allocate non-

class time
Long term information

availability Authenticate

Makes scheduling
classes easier 8 3 6 2 19

Makes scheduling a
semester easier 7 9 8 2 26

Find schedules in one
place 1 1 5 7 14

Total 16 13 19 11 59

SchedulerPro Product Reliability

• Two hours of unavailability allows for daily
backups, service, and reboots of the system

• Connections to server are minimized, reducing
overall activity on the server

SchedulerPro
Estimate of Reliability

R(t) = 1 R(t) = 1 -- F(t) F(t) F(t) = P(T F(t) = P(T ≤≤ t)t)

• During load testing, we discovered the test
server can support 1500 user queries a
minute.

•• P(failures/query) = 55/1500 = 0.036P(failures/query) = 55/1500 = 0.036

• Thus, F(t) = 3.6%, which means the
software is 96.4% reliable

SchedulerPro
Reliability Estimate

1/ λ = MTTF = εE/kC
k = scaling constant = 1
C is complexity = 2.78

E is the development effort = 36.4
ε is the expansion factor = 1.5

λ = 0.05

t is the continuous execution time for the software

R(t) = 95.12%

Complexity Chart - Client

• Project Type: online transaction

• Problem Domain: 2
• Architecture Complexity: 3
• Logic Design – Data: 2
• Logic Design – Code: 3

• Total Score: 10
• Complexity = (10/18) * 5 = 2.78

Complexity Chart - Server

• Project Type: online transaction

• Problem Domain: 1
• Architecture Complexity: 2
• Logic Design – Data: 2
• Logic Design – Code: 2

• Total Score: 7
• Complexity = (7/18) * 5 = 1.94

Complexity Chart - Overall

• Project Type: client/server
• Problem Domain: 2
• Architecture Complexity: 3
• Logic Design – Data: 2
• Logic Design – Code: 3

• Total Score: 10
• Complexity = (10/18) * 5 = 2.78

Jan. Function Point Est.
Function Low (L) Average (A) High (H) Total

Outputs 1 3 0 19

Inquiries 8 4 1 49

Inputs 5 7 1 41

Internal Files 3 2 0 24

External Interfaces 2 1 0 10

Total UFP 143

Adjustment Factor 0.99

Total AFP 141

April Function Points Est.
Function Low Average High Total

Outputs 1 0 1 9

Inquiries 3 0 0 9

Inputs 2 3 0 18

Internal Files 3 1 0 31

External
Interfaces

1 1 0 12

Total UFP 79

AFP 82

History of Function Points
Date AFP Project

Length*
141 19.7 staff

months
14.4 staff
months
8.5 staff
months

104

82

Projected
Finish*

January 27 August 2006

February 24 March
2006

April 17 May
2006

*Using COCOMO Model

ICED-T

Scheduling by: Intuitive Consistent Efficient Durable Thoughtful

Paper 3 2 2 2 3

Excel 3 2 3 3 3

School
Scheduler 3 4 4 3 4

SchedulerPro 4 4 5 4 5

Missing: An Installation Plan

Installation

1. Third Party Software Required

Scheduler Pro requires the following products to be already installed on the target
machine. Please consult the documentation of each product for installation
instructions specific to each.

- Windows 2000, XP, or 2003 Server
- Microsoft IIS, version 5.0 or higher
- Microsoft .NET, version 1.1
- Microsoft SQL Server 2000
- Message Queuing Service (Windows component)
- ASP.NET State Service

Software Requirements Process

• Requirements Elicitation
• Requirements Analysis
• Use Cases
• Requirements Specification
• Prototype/Modeling
• Requirements Management

Creeping Featurism
• Endemic to the Software Industry

– Occurs on more than 70% of all applications of over 1000
function points

• From a 60 project sample
– Average creep was 35%
– Maximum observed was 200%
– Creeping requirements change about 1% per month

• For a 3 year project, 1/3 of the delivered requirements would
have been added after requirements were initially defined

• Rate of Requirements change is higher than for other
forms of engineering (electrical, mechanical, civil)

Root Causes of Creeping
Requirements

• Uncertainty in resolving true user needs
• For multi-year projects, changes in normal

business environment
• Failure to adopt methodologies that limit the

risk associated with creeping requirements
• Primitive fundamental technologies for

exploring and modeling requirements
• Failure to use technology to measure the

impact of creeping requirements
• Engineering trade-off analysis is impossible

Requirements Management

• Establish and maintain a business case to
support funding

• Strategic linkages to business and technology
organizations –AVOID SHELFWARE

• Continuous customer agreement on
requirements

• Requirements agreement used as a basis for
estimating, planning, implementing and tracking

• FORMAL COMMITMENT PROCESS

Requirements Engineering
Process

Requirements
Elicitation
Requirements
Elicitation

Requirements
Analysis & Negotiation
Requirements
Analysis & Negotiation

Agreed
Requirements

Draft Requirements
Document

Requirements
Document &
Validation Report

Informal Statement
of Requirements

Decision Point:
Accept Document
or re-enter spiral

Requirements
Specification
Requirements
Specification

Requirements
Validation
Requirements
Validation

• Process Models
• Process Actors and

Stakeholders
• Process Support

and Management
• Process Quality and

Improvements
• Relationship to the

Business Decision

Real-time Requirements

• Computer uses only past and present data
• Data is sampled at a constant rate, the

pulse repetition rate of the radar,
• The calculations are completed in time to

adjust the radar for the next sample
• The equations are stable

Requirements Process
• Elicitation

– Request Analysis
• Sourcing & Screening

– Definition
• Purposeful
• Understand value

• Analysis
– Interrelationships
– Prioritization
– Risk & Cost Assessment

• Specification
– Modeling

• Validation
– Agreement

• Change Management

Request
Analysis

Requirements
Definition

Requirements
Analysis

Requirements
Elicitation

Requirements
Specification

Requirements
Validation

R
eq

ui
re

m
en

ts
 C

ha
ng

e
M

an
ag

em
en

t

Requirements Analysis
• Requirements Classification

– Product/Process
– Priority/Risk
– Scope/Allocation
– Volatility/Stability

• Conceptual Modeling
– Understanding &

Communication
– Functional Architecture

• Requirements Negotiation
– Trade Offs
– Consensus with Stakeholder

Requirements
Classification

ConstraintsConstraints

Project
Strategy

Project
Strategy

RisksRisks

Requirements
Packages

Requirements
Packages

Requirements
Modeling

Requirements
Negotiation

Defined
Requirements

Defined
Requirements

Domain
Models

Domain
Models

Example
• Develop Use Cases

– Focus on Goals
– Identify Actors
– Identify Main Tasks

• Use Case Concept
– Complete, orthogonal,

externally visible
functionality

– Initiated by an actor
– Identifiable value to the

actor

Ordering
System

Customer

<<actor>>
Account
System

<<actor>>
Inventory

Shipping Clerk

View
Status

Create &
Submit Orders

Software Requirements Spec.
• Concept of Operations

– System Characteristics
– User Operational Needs
– Domain Perspective
– Constraints
– Trade-Off Analysis

• Software Requirements
Specification
– Basis for Agreement
– Reduce Development
– Provide Basis for Estimation
– Baseline for Validation &

Verification
– Basis for Enhancement

Concept of
Operations

Requirements
Packages

Requirements
Packages

Software
Requirements
Specification

Concept of
Operations

Concept of
Operations

Domain
Models

Domain
Models

Software
Requirements
Specification

Software
Requirements
Specification

Requirements Specification
Spec

1. Project Title, Revision Number and Author
2. Scope and Purpose of the system
3. Measurable Operational Value
4. Description
5. Feature List including ICED T and Simplified QFD

analysis
6. Interfaces
7. Constraints
8. Change Log and Expected Changes
9. Responses to the unexpected
10.Measurements
11.Glossary
12.References

Requirements Validation
• Requirements Reviews

– Formal
– Customer Representative

• Prototyping
• Model Validation

– Scenario Reviews with
Customers

– Model Consistency

• Acceptance Tests
– Verifiable Requirements

Requirements
Review

Requirements
Review

PrototypePrototype

Software
Requirements
Specification

Software
Requirements
Specification

Domain
Models

Domain
Models

Scenario
Review

Scenario
Review

System
Design
System
Design

System
Test

System
Test

Customer
Review

As of
9/9/04

Use Cases Drive Development

Use Cases

Test Case
Design

Architecture
and Design

Use Case Documentation
Feature Use Case

The customer can order on the web. UC 1

The customer builds the order by selecting items from the on-line catalog and
specifying a quantity.

UC 1

Only customers that have an account can create an order. UC 1

Customers with the priority privilege may designate an order as priority. UC 1a

Once an order is submitted, it is checked to see if it is pre-paid or whether the
customer has an account in good standing. If these conditions are not met, the
order is held until the conditions are met or the order is cancelled.

UC 1

At any time during the process of creating an order, the customer can determine
the current price of the order.

UC 1

The customer signifies that the order is complete by submitting the order. When
an order is submitted, it is assigned an order number.

UC 1

The customer can view the status of an order at any time by logging on to web
site and requesting status on all open orders.

UC 2

…

Use Case Documentation
Use Case 1 Create Order & Submit

Brief Description A customer wishes to order. Provided that the customer has a non-delinquent account
or has pre-paid, the product is removed from inventory and delivered to the customer.

Actors Customer, Inventory, Shipping Clerk, Account System

Trigger Customer visits web site & creates an order.

Preconditions Customer has established and account.
Customer email address is known.
Customers are pre-designated to enter priority orders.

Main flow Customer visits web site, signs on and is validated. Customer selects items from the
online catalog and builds an order. Customer is appraised of current cost of order.
Customer may denote that the order is a priority Customer submits order when done.
A customer order number is assigned and the customer’s credit and account status are
checked. If credit is OK or the account shows pre-payment, then the order is sent to the
inventory system. …..

Alternative flows Priority Order
Account is delinquent. Action taken ? Cancelled ?
Changes to or cancellation of the order?
Order cannot be fulfilled ?

Postconditions Order has been created and is either been cancelled or been fulfilled.

Package Diagram

• Groups related use
cases

• Forms basis for a
functional partitioning
from the users point
of view.

• Shorthand for tracking
within the project

Order Entry

View
Status

Create &
Submit Orders

Activity Chart

Enter
Order

Check
Credit

[submitted]

[aborted]

[denied]

Allocate
Inventory

[approved]

Prepare
Delivery

Receive
Payment

Create Order
& Submit

<<trace>>

Order Entry Finance FinanceShipping
Inventory

Management

Activity Diagram

Order
Assigned

Assign Held
Orders First

For each order item

Held Orders
Done?

Allocate
Inventory

[not done]

<<trace>>

Request
Open Items Inventory

Inventory
Arrived

For each
priority order

Items
Available

Items Not
Available

For each order item

Hold
Order

Update
Order Item

Update
Order Item

Post to
Delivery

[done]

Priority
Order?

[no]

New Items
Assigned?

[no]

For all
unfulfilled
orders For all fulfilled

orders

Mapping Requirements to a
Framework

• ICED T
– Intuition
– Consistent
– Efficient
– Durable

– Thoughtful

• UML Framework
– Use Cases
– Structure
– Business Rules

PMO
Models

Requirements

Elicitation
Reports

Use
Cases

Use
Cases

Static
Structure

Static
Structure

Activity
Model

Activity
Model

Case History: Cardiac Data
Analysis

Propectus: Create a graphical interface
that displays a time series graph with
selected points of inflection, and allows
for user modification of points.

MOV

Background: Drs. determine points
manually taking 20-30 minutes, or with
tools that take 2 – 10 minutes.

MOV: Our software allows points to be
chosen, on average, 4 times faster than
previous available tools with 80%
accuracy

Function Points
Use Cases Transactions Type Complexity UFP

Tool 1:
Input data file 1 I 4 4
User point modification 1 I 6 6
Load User Point Changes 1 I 3 3
Screenshot 1 O 4 4
Save User Point Changes 1 O 4 4

Tool 2:
Curve Fitting Algorithm 1 I 6 6
Find/Send points to tool 1 1 O 7 7
Point Selecting Algorithm 7 N 15 105

Tool 3:
Data from tool 1 1 I 4 4
Rotating image (user control) 2 I 6 12
Snapshot 1 O 4 4
Coloration of Image logic 1 N 15 15
3-D imaging/rotation logic 1 N 15 15

189Total Unadjusted Function Points

Siemens Unadjusted Function Point Analysis
Updated 2/15/06

Simplifications

• Narrowing of the requirements to only consider
data from ‘healthy hearts.’

• Open source code: NTGraph.
• Before simplifications

Unadjusted Function Points were 356
now they are 189.

Function Points to LOC
• This conversion cart is shown below

• Thus for our system using the conversion factor of 53 LOC/FP since we
will be programming in C++ we can find the estimated LOC for our
system through the following formula:

LOC = 53 * UFP
• Thus we can solve this equation to find the LOC estimated for our

system.
LOC = 53 * UFP, where UFP = 189
LOC = 53 * 189 = 10,017 LOC

From http://www.stsc.hill.af.mil/crosstalk/2005/04/0504Roetzheim.html

COCOMO
Effort/Staff Hours = A*(KNCSLOC)**B
Where KNCSLOC ≡ thousands of new and changed

lines of code,
A ≡ small project productivity,
B≡ complexity factor

We use:
• Semidetached: A=3.0 B=1.12
• KNCSLOC = 10

Effort = 3.0*(10)1.12 = 39.623 ≈ 40 staff months

Gantt Chart

ICED-T

ICED-T

Requirements Architecture Prototype Development Final

Intuitive 2 3 3 1 3

Consistent 3 4 2 4 4

Efficient 3 4 3 2 4

Durable 5 4 2 5 5

Thoughtful 4 5 4 4 4

Build

Metric

Reliability Requirement

Heisenbugs

Latent faults causing gradual
deterioration a software process
with respect to the use of some
resource resulting in a failure.

Case Study: Pluto Express

• Duplicated computers for reliability.
• One computer runs at a time to minimize

power drain.
• Hardware detects computer failure and

switches to backup.
• Assume Prob. of unsuccessful switchover

= 10-8

Case Study: Pluto Express

Boot

Failure

Robust
Operation

Vulnerable

Operation

Case Study: Pluto Express

Let the rate of going from Robust State to
Vulnerable State be: 10-3

Let the rate of going from the Vulnerable
State to Failure be: 10-4

Then using Rejuvenation with a 6 week
period increases system reliability by a
factor of 10

Case Study: Pluto Express

If the failures double and the Rejuvenation
interval is halved, system reliability with
Rejuvenation is about100 times more
reliable then systems without
Rejuvenation.

Parnas reliability checklist

Response to all failures in communication,
secondary storage, memory, or any
hardware that may interrupt a transaction:

The SQL Server DBMS will not commit incomplete
transactions. User will be notified of the error, and
will have to redo the transaction.

• Operator errors:
Important operations are confirmed before they are
completed to avoid large accidental errors.

Conditions That Cause Unreliability

• Poor Algorithms
• Missing Deadlines
• Roundoff Error Build Up
• Memory Leaks
• Broken Pointers

SEI Capability Model

Level 1
Initial

Process
81%

Ad Hoc,
chaotic

Level 2
Repeatable

Process
12%

Intuitive, dependent
on talented
individuals

Level 3
Defined
Process

7%
Process defined &
institutionalized,
reliable cost &
schedule

Level 4
Managed
Process

0%
Reasonable control
over quality,
measured process

Level 5
Optimizing

Process
0% Adaptive feedback

process

Source: Andriole, Stephen J., Managing
System Requirements, Methods,

Tools, and Cases
McGraw-Hill, 1996

Source: Andriole, Stephen J., Managing
System Requirements, Methods,

Tools, and Cases
McGraw-Hill, 1996

Key Process Areas
Process change management
Technology change management
Defect prevention

Configuration Management
Quality Assurance
Subcontract Management
Project planning, tracking, & oversight
Requirements management

Peer reviews & training program
Inter-group coordination
Product engineering
Process definition & focus
Integrated software management

Software quality management
Quantitative process management

People

Software Trustworthiness depends on
people:

I propose that customers insist that software
products identify a Software Architect and
Software Project Manager in their
contracts

Software Architect:

• Affirms that the software product solves
the customer’s problem

• Affirms that the software product is
suitably reliable, easy-to-use, extendible,
not harmful and robust. That it is
trustworthy.

• Affirms that the requirements are valid.

Software Project Manager:

• Affirms that the software was successfully
tested against the requirements.

• Affirms and identifies the good software
engineering processes were used in the
software development and integration.

• Affirms that the project is within budget, on-
time and performs satisfactorily.

People

Software Trustworthiness depends on
people:

I propose that customers insist that software
products identify a Software Architect and
Software Project Manager in their
contracts

Software Architect:

• Affirms that the software product solves
the customer’s problem

• Affirms that the software product is
suitably reliable, easy-to-use, extendible,
not harmful and robust. That it is
trustworthy.

• Affirms that the requirements are valid.

Software Project Manager:

• Affirms that the software was successfully
tested against the requirements.

• Affirms and identifies the good software
engineering processes were used in the
software development and integration.

• Affirms that the project is within budget, on-
time and performs satisfactorily.

Systems Engineering
Systems Engineering
“An interdisciplinary approach and means to enable the

realization of successful systems.”
– INCOSE (The International Council on Systems Engineering)

System:
“A group of interacting, interrelated, or interdependent

elements that together form a complex whole.”
– NGE Project (Next Generation Education Project)

QSE Lambda Protocol

• Prospectus
• Measurable Operational Value
• Prototyping or Modeling
• sQFD
• Schedule, Staffing, Quality Estimates
• ICED-T
• Trade-off Analysis

Requirements Engineer

Customer
Needs

Customer
Needs

Feature
Packages
Feature

Packages

Understand
Domain

Knowledge

Understand
Domain

Knowledge

Communicate
Development

Strategy

Communicate
Development

Strategy

Customer Domain Solution Domain

Lambda
Protocol
for me!

	The Lambda Protocol for�Synthesizing Trustworthy �Requirements
	QSE Lambda Protocol
	Trustworthy Software is:
	What is a Requirement?
	Top Ten Software Risk Items
	Costs Cone of Uncertainty
	QSE Characteristics
	Universal Software Engineering Equation
	Boundary Conditions
	Software Testing Footprint
	QSE Lambda Protocol
	Prospectus
	Case Study: SchedulerPro Prospectus
	SchedulerPro Prototype Screen
	SchedulerPro Prototype Screen
	SchedulerPro Notification Emails
	Measurable Operational Value� SchedulerPro MOV
	SchedulerPro Functional Goals
	Student Directed Features
	SchedulerPro Nonfunctional Requirements
	More Non-functional requirements
	sQFD
	SchedulerPro Product Reliability
	SchedulerPro �Estimate of Reliability
	SchedulerPro Reliability Estimate
	Complexity Chart - Client
	Complexity Chart - Server
	Complexity Chart - Overall
	 Jan. Function Point Est.
	April Function Points Est.
	History of Function Points
	ICED-T
	Missing: An Installation Plan
	Software Requirements Process
	Creeping Featurism
	Root Causes of Creeping Requirements
	Requirements Management
	Requirements Engineering Process
	Real-time Requirements
	Requirements Process
	Requirements Analysis
	Example
	Software Requirements Spec.
	Requirements Specification Spec
	Requirements Validation
	Use Cases Drive Development
	Use Case Documentation
	Use Case Documentation
	Package Diagram
	Activity Chart
	Activity Diagram
	Mapping Requirements to a Framework
	Case History: Cardiac Data Analysis
	MOV
	Function Points
	Simplifications
	Function Points to LOC
	COCOMO
	Gantt Chart
	ICED-T
	Reliability Requirement
	Heisenbugs
	Case Study: Pluto Express
	Case Study: Pluto Express
	Case Study: Pluto Express
	Case Study: Pluto Express
	Parnas reliability checklist
	Conditions That Cause Unreliability
	SEI Capability Model
	People
	Software Architect:
	Software Project Manager:
	People
	Software Architect:
	Software Project Manager:
	Systems Engineering
	QSE Lambda Protocol
	Requirements Engineer

