
10/14/09

1

Tutorial at NexTech 2009, Sliema, Malta

Dr. Anna Förster, University of Lugano, Switzerland
anna.foerster@ieee.org

 Learn how Machine Learning can help you
optimize your WSN communications
 Select the most appropriate ML technique for
your problem

 Design the ML based solution and implement it
efficiently

 Transfer the obtained knowledge to other wireless
networking problems

Copyright: Anna Förster 2009

10/14/09

2

Part 1:
  Introduction to Wireless Sensor Networks
 Machine Learning techniques and their
properties

Part 2:
 State of the art applications of ML to WSNs
 Discussion of further application areas and
problems

Copyright: Anna Förster 2009

Overview, problems and challenges

Copyright: Anna Förster 2009

10/14/09

3

sink

sink

Copyright: Anna Förster 2009

Wireless Ad Hoc Medium
‐  unreliable, asymmetric or

unidirectional links
‐  restricted broadband
+  broadcast advantage

Resource limitations
‐  small on‐node battery
‐  limited processing and

memory
+  low cost
+  many nodes, physical

distribution

Topology changes and
mobility

‐  mobile sinks and/or nodes
‐  failing nodes
+  new nodes joining

Harsh environments
‐  no physical access to network

once deployed (glaciers, volcano)
‐  varying temperature, humidity,

wildlife

WSN

Copyright: Anna Förster 2009

10/14/09

4

Communication stack

Physical layer

Medium Access Layer

Routing and neighborhood
management

Clustering

Application level

Reconstruction of data

WSN distributed
databases

Security

Event and target
detection Elephant!

Evaluation methodologies

Programming, design and deployment

Machine Learning Applications

Topic of this
tutorial

Copyright: Anna Förster 2009

What is Machine Learning and why should we use it?

Copyright: Anna Förster 2009

10/14/09

5

Major goal
Produce models (rules, patterns)

from data

Properties
Robust and flexible

Global models from local data
No environmental model

Machine learning can innately solve various challenges in WSNs and
improve their performance significantly

…

Neural
Networks

Reinforcement
Learning

Genetic
Algorithms

Decision
Trees

Swarm
Intelligence

Copyright: Anna Förster 2009

Trial and error: Learn from your environment

Copyright: Anna Förster 2009

10/14/09

6

  A learning agent
  A pool of possible actions
  Goodness of actions
  A reward function

  Select one action
  Execute the action
  Observe the reward
  Correct the goodness of the executed action

Copyright: Anna Förster 2009

Copyright: Anna Förster 2009

10/14/09

7

  Learning agent

Copyright: Anna Förster 2009

D

B

A

E

F

C

START

  Learning agent
  Internal current state st

Copyright: Anna Förster 2009

10/14/09

8

D

B

A

E

F

C

START

  Learning agent
  Internal current state st
  Pool of possible actions

At(st)

Copyright: Anna Förster 2009

D

B

A

E

F

C

START

  Learning agent
  Internal current state st
  Pool of possible actions

At(st)

  Associated Q‐value to each
action in each state

Copyright: Anna Förster 2009

10/14/09

9

D

B

A

E

F

C

START

0

0

0

0

100

0

0

0

100

0

0

action with immediate

reward 0 and cost -1

action with immediate

reward 100 and cost -2

0

100

100

  Learning agent
  Internal current state st
  Pool of possible actions

At(st)

  Associated Q‐value to each
action in each state

  Immediate reward after
each action

Copyright: Anna Förster 2009

D

B

A

E

F

C

START

0

0

0

0

100

0

0

0

100

0

0

action with immediate

reward 0 and cost -1

action with immediate

reward 100 and cost -2

0

100

100

  Learning agent
  Internal current state st
  Pool of possible actions

At(st)

  Associated Q‐value to each
action in each state

  Immediate reward after
each action

  Learning procedure:
  select an action 1. select an action

Copyright: Anna Förster 2009

10/14/09

10

D

B

A

E

F

C

START

0

0

0

0

100

0

0

0

100

0

0

action with immediate

reward 0 and cost -1

action with immediate

reward 100 and cost -2

0

100

100

  Learning agent
  Internal current state st
  Pool of possible actions

At(st)

  Associated Q‐value to each
action in each state

  Immediate reward after
each action

  Learning procedure:
  select an action
  execute the action

1. select an action

2. execute the action

Copyright: Anna Förster 2009

D

B

A

E

F

C

START

0

0

0

0

100

0

0

0

100

0

0

action with immediate

reward 0 and cost -1

action with immediate

reward 100 and cost -2

0

100

100

  Learning agent
  Internal current state st
  Pool of possible actions

At(st)

  Associated Q‐value to each
action in each state

  Immediate reward after
each action

  Learning procedure:
  select an action
  execute the action
  observe reward

1. select an action
2. execute the action

3. receive reward

Copyright: Anna Förster 2009

10/14/09

11

D

B

A

E

F

C

START

0

0

0

0

100

0

0

0

100

0

0

action with immediate

reward 0 and cost -1

action with immediate

reward 100 and cost -2

0

100

100

  Learning agent
  Internal current state st
  Pool of possible actions

At(st)

  Associated Q‐value to each
action in each state

  Immediate reward after
each action

  Learning procedure:
  select an action
  execute the action
  observe reward

  update state and Q‐
values

1. select an action
2. execute the action

3. receive reward

4. st = D, Q(aD, C)
Copyright: Anna Förster 2009

D

B

A

E

F

C

START

0

0

0

0

100

0

0

0

100

0

0

action with immediate

reward 0 and cost -1

action with immediate

reward 100 and cost -2

0

100

100

  Learning agent
  Internal current state st
  Pool of possible actions

At(st)

  Associated Q‐value to each
action in each state

  Immediate reward after
each action

  Learning procedure:
  select an action
  execute the action
  observe reward

  update state and Q‐
values

1. select an action
2. execute the action

3. receive reward

4. st = D, Q(aD, C)
Copyright: Anna Förster 2009

10/14/09

12

€

Q st+1,at() =Q st ,at() + γ R st ,at() −Q st ,at()()
new Q-Value old Q-Value immediate reward received

after executing action
a in state s at time t

old Q-Value learning constant

  Learning constant: avoid oscillations of Q values at the
beginning of the learning process (smooth the Q‐Values)

  γ ≈ 0 : new Q‐Value is exchanged with the reward
  γ ≈ 1 : new Q‐Value is the same as the old one

Copyright: Anna Förster 2009

  Two main types:
  Pre‐defined
  Computed after each action

  Often used :
  zero awards for actions leading directly to the goal
  negative for all others (e.g. ‐1)

  Also used:
 Manhattan distance to the goal
  Geographic distance to the goal
  Currently best available Q value at the state (!!)

Copyright: Anna Förster 2009

10/14/09

13

 Exploration strategy (action selection policy)
 Cannot be random, need to use accumulated
knowledge

 Cannot be greedy, need to explore all
possibilities

 Often used: ε‐greedy
 select a random action with probability ε
 select the best available one (best Q‐value) with
probability (1‐ε)

Copyright: Anna Förster 2009

 Simple, flexible model
 Adapts to changing environments, re‐learn
quickly

 Copes successfully with mobile or unreliable
environments

 Simple to design and implement
 Small to moderate processing and memory
needs

 Can be implemented fully distributed
Copyright: Anna Förster 2009

10/14/09

14

 All distributed problems:
 Routing protocols
 Clustering protocols
 Neighborhood management protocols
 Medium Access protocols

 Further
 Parameter optimization and learning
 Application‐level cooperation among nodes

Copyright: Anna Förster 2009

Data classification

Copyright: Anna Förster 2009

10/14/09

15

 Classifying objects into groups based on
attribute pairs

form = round
color = orange
taste = sour

form = round
color = red, orange, green
taste = sweet

apple orange

?
Copyright: Anna Förster 2009

 Classifying objects into groups based on
attribute pairs

form = round
color = orange
taste = sour

form = round
color = red, orange, green
taste = sweet

apple orange

form = ?
color = ?
taste = ?

Copyright: Anna Förster 2009

10/14/09

16

 Classifying objects into groups based on
attribute pairs

form = round
color = orange
taste = sour

form = round
color = red, orange, green
taste = sweet

apple orange

form = round
color = ?
taste = ?

???

Copyright: Anna Förster 2009

 Classifying objects into groups based on
attribute pairs

form = round
color = orange
taste = sour

form = round
color = orange, red, green
taste = sweet

apple orange

form = round
color = orange
taste = ?

???

Copyright: Anna Förster 2009

10/14/09

17

 Classifying objects into groups based on
attribute pairs

form = round
color = orange
taste = sour

form = round
color = orange, red, green
taste = sweet

apple orange

form = round
color = orange
taste = sweet

apple!

Copyright: Anna Förster 2009

 Classifying objects into groups based on
attribute pairs

form = round
color = orange
taste = sour

form = round
color = orange, red, green
taste = sweet

apple orange

taste = ?
color = ?
form = ?

???

Copyright: Anna Förster 2009

10/14/09

18

 Classifying objects into groups based on
attribute pairs

form = round
color = orange
taste = sour

form = round
color = orange, red, green
taste = sweet

apple orange

taste = sweet
color = ?
form = ?

apple!

Copyright: Anna Förster 2009

 Classifying objects into groups based on
attribute pairs

 Which questions to ask first, which next?
 Compute information gain of attributes

 How well does an attribute separates
the testing set?

Copyright: Anna Förster 2009

10/14/09

19

Goal: construct a decision tree with attribute at each node
1.  Start at root
2.  Find the attribute with maximal information gain, which is

not an ancestor of the node
3.  Put a child node for each value of this attribute
4.  Add all examples from the training set to the

corresponding child
5.  If all examples of a child belong to the same class, put the

class there and go back up in the tree
6.  If not, continue with step 2 while attributes are left
7.  When no more attributes are left, put the classification of

the majority of the examples to this node

Copyright: Anna Förster 2009

example form color class

1 round red apple

2 round orange apple

3 round orange orange

4 round green apple

5 round yellow apple

6 round orange orange

  Information gain of FORM: zero
  Information gain of COLOR: more

Copyright: Anna Förster 2009

10/14/09

20

example form color class

1 round red apple

2 round orange apple

3 round orange orange

4 round green apple

5 round yellow apple

6 round orange orange

  Information gain of FORM: zero
  Information gain of COLOR: more

color

red green orange yellow

Copyright: Anna Förster 2009

example form color class

1 round red apple

2 round orange apple

3 round orange orange

4 round green apple

5 round yellow apple

6 round orange orange

  Information gain of FORM: zero
  Information gain of COLOR: more

color

red green orange yellow

1 4 2,3,6 5

Copyright: Anna Förster 2009

10/14/09

21

example form color class

1 round red apple

2 round orange apple

3 round orange orange

4 round green apple

5 round yellow apple

6 round orange orange

  Information gain of FORM: zero
  Information gain of COLOR: more

color

red green orange yellow

1 4 2,3,6 5

apple apple apple ?

Copyright: Anna Förster 2009

example form color class

1 round red apple

2 round orange apple

3 round orange orange

4 round green apple

5 round yellow apple

6 round orange orange

  Information gain of FORM: zero
  Information gain of COLOR: more

  Only left attribute: FORM

color

red green orange yellow

1 4 2,3,6 5

apple apple apple

form

round

2,3,6

orange
Copyright: Anna Förster 2009

10/14/09

22

example form color class

1 round red apple

2 round orange apple

3 round orange orange

4 round green apple

5 round yellow apple

6 round orange orange

  All orange apples will be classified as oranges
  Leaf node FORM unnecessary

  DECISION TREE DEPENDS ON TRAINING SET

color

red green orange yellow

1 4 2,3,6 5

apple apple apple

form

round

2,3,6

orange
Copyright: Anna Förster 2009

 Good for fast classification of fuzzy,
overlapping groups

 Tree generated only once
 Well‐suited for static, but error‐prone
environments

 Needs a good large training set
 Moderate processing and large memory
requirements (to hold the training set)

Copyright: Anna Förster 2009

10/14/09

23

 Static problems
 Link quality classification
 Network status classification
 Battery level classification
 …

Copyright: Anna Förster 2009

Evolve and survive

Copyright: Anna Förster 2009

10/14/09

24

 Basic idea
 Represent a solution to a problem as
an individual (bit string)

 Create many individuals
 Evaluate the individuals based on a fitness
function

 Select the best individuals, use them to create
new individuals

 Repeat until solution good enough

Copyright: Anna Förster 2009

  Individual: bit string of cities

  Fitness function: the length
of the tour

  Create random tours

1

2

3
4

5

6

7

1 2 3 4 5 6 7

length: 20

1 2 3 4 5 6 7

7 2 1 4 3 6 5

2 1 6 5 3 4 7

3 5 1 4 7 2 6

length: 20

length: 17

length: 22

length: 25

7 6 3 2 5 4 1 length: 21

Copyright: Anna Förster 2009

10/14/09

25

  Crossover 1

2

3
4

5

6

7

1 2 3 4 5 6 7

length: 20

1 2 3 4 5 6 7

7 2 1 4 3 6 5

Copyright: Anna Förster 2009

  Crossover 1

2

3
4

5

6

7

length: 20

1 2 3

4 5 6 7 7 2 1

4 3 6 5

Copyright: Anna Förster 2009

10/14/09

26

  Crossover 1

2

3
4

5

6

7

length: 20

1 2 3

4 5 6 7 3 2 1

4 7 6 5

Copyright: Anna Förster 2009

  Crossover 1

2

3
4

5

6

7

length: 20

1 2 3

4 5 6 7 7 2 1

4 3 6 5

  Mutation

4 5 6 7 3 2 1

Copyright: Anna Förster 2009

10/14/09

27

  Crossover 1

2

3
4

5

6

7

length: 20

1 2 3

4 5 6 7 7 2 1

4 3 6 5

  Mutation

4 5 6 4 3 2 1

Copyright: Anna Förster 2009

  Crossover 1

2

3
4

5

6

7

1 2 3 4 5 6 7

length: 20

1 2 3

4 5 6 7 7 2 1

4 3 6 5

  Mutation

7 5 6 4 3 2 1

  Evaluate new generation,
REPEAT

Copyright: Anna Förster 2009

10/14/09

28

 Search algorithms for very large search
spaces

 Find near‐optimal solutions to NP‐hard
problems (e.g. TSP)

 Very high memory and processing
requirements

 Not flexible to changes in the environment
(add a new city to TSP)

Copyright: Anna Förster 2009

 Good for static problems with centralized
data processing:
 centralized scheduling and clustering
 optimal sensing coverage
 optimal transmission power of nodes
 deployment planning

 Not suited for distributed error‐prone
problems like routing, MAC protocols or
large‐scale clustering

Copyright: Anna Förster 2009

10/14/09

29

Distribute the thinking

Copyright: Anna Förster 2009

 Biologically inspired from ants, bees, etc.
 Small, restricted entities (agents)
 Communicate through the environment (e.g.
pheromones)

 Solve problems not solvable for individual
agents

Copyright: Anna Förster 2009

10/14/09

30

Video cordially provided by Prof. Luca M. Gambardella

Copyright: Anna Förster 2009

Video cordially provided by Prof. Luca M. Gambardella

Copyright: Anna Förster 2009

10/14/09

31

 Particle Swarm Optimization
 Ant Colony Optimization
 Honey Bee Algorithm

Copyright: Anna Förster 2009

 Particle Swarm Optimization
 Ant Colony Optimization
 Honey Bee Algorithm

Copyright: Anna Förster 2009

10/14/09

32

  Represent solution as a graph (e.g. find
shortest path between 2 nodes)

  Initialize all edges in the graph with some
small amount of pheromone

  Place ants at the source node
  Ants take random decisions on which edge

to proceed based on placed pheromone on
that edge

  When the destination is reached, ant
calculates fitness (goodness) of the solution
(path) and traverses the same path back to
lay additional pheromone

  Ants converge on the shortest path, but
continue exploring other routes too

F

N

a

b

1

F

N

2

F

N

3

Copyright: Anna Förster 2009

 Fully distributed
 Low memory and processing requirements
 Moderate management requirements (see
next slide)

 Very flexible to environmental changes
 Very robust against failures and topology
changes

Copyright: Anna Förster 2009

10/14/09

33

 Distributed problems such as unicast routing
 Very flexible against topology changes, even high
speed mobility

 Some additional communication overhead
needed for backward ants and pheromone sharing

 Less suited for broadcast problems: breaks
the analogy with ants and changes the model
significantly

Copyright: Anna Förster 2009

Copyright: Anna Förster 2009

10/14/09

34

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

126 6 One and Two Layered Networks

In neural network literature there is an inconsistency in notation that
unfortunately has become tradition. The input sites of a network are usually
called input units, although nothing is computed here. The output sites of
the network are implicit in the construction but not explicitly given. The
computing units from which results are read off are called the output units.

Layered architectures are those in which the set of computing units N is
subdivided into ! subsets N1, N2, . . . , N! in such a way that only connections
from units in N1 go to units in N2, from units in N2 to units in N3, etc. The
input sites are only connected to the units in the subset N1, and the units in
the subset N! are the only ones connected to the output sites. In the usual
terminology, the units in N! are the output units of the network. The subsets
Ni are called the layers of the network. The set of input sites is called the
input layer, the set of output units is called the output layer. All other layers
with no direct connections from or to the outside are called hidden layers.
Usually the units in a layer are not connected to each other (although some
neural models make use of this kind of architecture) and the output sites are
omitted from the graphical representation.

A neural network with a layered architecture does not contain cycles. The
input is processed and relayed from one layer to the other, until the final
result has been computed. Figure 6.1 shows the general structure of a layered
architecture.

input layer output layer

hidden layers

...

...
.
.
.

.

.

.

.

.

.

Fig. 6.1. A generic layered architecture

In layered architectures normally all units from one layer are connected
to all other units in the following layer. If there are m units in the first layer
and n units in the second one, the total number of weights is mn. The total
number of connections can become rather large and one of the problems with
which we will deal is how to reduce the number of connections, that is, how
to prune the network.

6.1.2 T he X O R p rob le m re v isi t ed

The properties of one- and two-layered networks can be discussed using the
case of the XOR function as an example. We already saw that a single per-
ceptron cannot compute this function, but a two-layered network can. The

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

Picture from “A Systematic Introduction
to Neural Networks”, Raul Rojas, 1996

  High memory and processing
requirements for training

  Small memory and processing
requirements for using

  Need large, carefully prepared training
set

  Solution design non‐intuitive
  Online versions exist, but have high

resources requirements
  Not suited when environmental

changes expected

Copyright: Anna Förster 2009

 Well‐known examples from routing in WSNs:
  number of hops

  Traditional heuristic search
  Build the full search tree
  Compute the value (goodness) of each node
  Take the minimum value path

  Online heuristic search,
agent‐centered search
  Evaluate the direct neighborhood
of the agent (directly reachable
states)

  Take the minimum valued one

current
state goal

state

local search space

Figure 1: Agent-Centered Search

planning plan execution

traditional search

agent-centered search

small (bounded) planning cost between plan executions

small sum of planning and execution cost

Figure 2: Traditional Search versus Agent-Centered Search

ited lookahead depth around the current board position to
determine which move to perform next. Thus, they perform
agent-centered search even though they are free to explore
any part of the state space. The reason for performing
only a limited local search is that the state spaces of real-
istic games are too large to perform complete searches in
a reasonable amount of time. The future moves of the op-
ponent cannot be predicted with certainty, which makes the
planning tasks nondeterministic. This results in an informa-
tion limitation that can only be overcome by enumerating
all possible moves of the opponent, which results in large
search spaces. Performing agent-centered search allows
game-playing programs to choose a move in a reasonable
amount of time while focusing on the part of the state space
that is the most relevant to the next move decision.

In this article, we concentrate on agent-centered search in
single-agent domains. Traditional search methods, such as
A* (Nilsson 1971; Pearl 1985), first determine plans with
minimal execution cost (such as time or power consump-
tion) and then execute them. Thus, they are off-line plan-
ning methods. Agent-centered search methods, on the other
hand, interleave planning and execution and are thus on-line
planning methods. They can have the following two advan-
tages, as shown in Figure 2: They can execute actions in the
presence of time constraints and often decrease the sum of
planning and execution cost.

Time constraints: Agent-centered search methods can
execute actions in the presence of soft or hard time con-
straints. The planning objective in this case is to approx-
imately minimize the execution cost subject to the con-

straint that the planning cost (here: time) between action
executions is bounded. This objectivewas the original in-
tent behind developing real-time (heuristic) search (Korf
1990) and includes situations where it is more important
to act reasonably in a timely manner than to minimize
the execution cost after a long delay. Driving, balanc-
ing poles, and juggling devil sticks are examples. For
instance, before an automated car has determined how to
negotiate a curve with minimal execution cost, it has
likely crashed already. Another example is real-time
simulation and animation, which become increasingly
important for training and entertainment purposes, in-
cluding real-time computer games. It is not convincing
if an animated character sits there motionlessly until a
minimal-cost plan has been found and then executes the
plan quickly. Rather, it has to avoid artificial idle times
and move smoothly. This objective can be achieved by
keeping the amount of planning between plan executions
small and approximately constant.

Sum of planning and execution cost: Agent-centered
search methods often decrease the sum of planning and
execution cost compared to planning methods that first
determine planswithminimal execution cost and then ex-
ecute them. This property is important for planning tasks
that need to be solved only once. The planning objective
in this case is to approximatelyminimize the sum of plan-
ning and execution cost. Delivery is an example. If I ask
my delivery robot to fetch me a cup of coffee, then I do
not mind if the robot sits there motionlessly and plans for
awhile, but I do care about receivingmy coffee as quickly
as possible, that is, with a small sum of planning and ex-
ecution cost. Since agents that perform agent-centered
search execute actions before they know that the actions
minimize the execution cost, they are likely to incur some
overhead in execution cost but this increase in execution
cost is often outweighed by a reduction in planning cost,
especially since determining plans with minimal execu-
tion cost is often intractable, such as for the localiza-
tion problems discussed in this article. How much (and
where) to plan can be determined automatically (even
dynamically), using either techniques tailored to spe-
cific agent-centered searchmethods (Ishida 1992) or gen-
eral techniques from limited rationality and deliberation
scheduling (Boddy and Dean 1989; Horvitz et al. 1989;
Zilberstein 1993). Applications of these techniques to
agent-centered search are described in (Russell and We-
fald 1991).

To make our discussionmore concrete, we now describe an
example of an agent-centered search method in single-agent
domains. We will relate all of the following agent-centered
search methods to this one.

Learning Real-Time A* (LRTA*) (Korf 1990) is an agent-
centered search method that stores a value in memory for
each state that it encounters during planning and uses tech-
niques from asynchronous dynamic programming (Bert-
sekas and Tsitsiklis 1997) to update the state values as plan-

Copyright: Anna Förster 2009

10/14/09

35

  Important difference to Reinforcement Learning:

the true, exactly calculated goodness values need to be available a‐priori
at the nodes!

  Resembles Q‐Learning after the Q‐Values have stabilized

current
state goal

state

local search space

Figure 1: Agent-Centered Search

planning plan execution

traditional search

agent-centered search

small (bounded) planning cost between plan executions

small sum of planning and execution cost

Figure 2: Traditional Search versus Agent-Centered Search

ited lookahead depth around the current board position to
determine which move to perform next. Thus, they perform
agent-centered search even though they are free to explore
any part of the state space. The reason for performing
only a limited local search is that the state spaces of real-
istic games are too large to perform complete searches in
a reasonable amount of time. The future moves of the op-
ponent cannot be predicted with certainty, which makes the
planning tasks nondeterministic. This results in an informa-
tion limitation that can only be overcome by enumerating
all possible moves of the opponent, which results in large
search spaces. Performing agent-centered search allows
game-playing programs to choose a move in a reasonable
amount of time while focusing on the part of the state space
that is the most relevant to the next move decision.

In this article, we concentrate on agent-centered search in
single-agent domains. Traditional search methods, such as
A* (Nilsson 1971; Pearl 1985), first determine plans with
minimal execution cost (such as time or power consump-
tion) and then execute them. Thus, they are off-line plan-
ning methods. Agent-centered search methods, on the other
hand, interleave planning and execution and are thus on-line
planning methods. They can have the following two advan-
tages, as shown in Figure 2: They can execute actions in the
presence of time constraints and often decrease the sum of
planning and execution cost.

Time constraints: Agent-centered search methods can
execute actions in the presence of soft or hard time con-
straints. The planning objective in this case is to approx-
imately minimize the execution cost subject to the con-

straint that the planning cost (here: time) between action
executions is bounded. This objectivewas the original in-
tent behind developing real-time (heuristic) search (Korf
1990) and includes situations where it is more important
to act reasonably in a timely manner than to minimize
the execution cost after a long delay. Driving, balanc-
ing poles, and juggling devil sticks are examples. For
instance, before an automated car has determined how to
negotiate a curve with minimal execution cost, it has
likely crashed already. Another example is real-time
simulation and animation, which become increasingly
important for training and entertainment purposes, in-
cluding real-time computer games. It is not convincing
if an animated character sits there motionlessly until a
minimal-cost plan has been found and then executes the
plan quickly. Rather, it has to avoid artificial idle times
and move smoothly. This objective can be achieved by
keeping the amount of planning between plan executions
small and approximately constant.

Sum of planning and execution cost: Agent-centered
search methods often decrease the sum of planning and
execution cost compared to planning methods that first
determine planswithminimal execution cost and then ex-
ecute them. This property is important for planning tasks
that need to be solved only once. The planning objective
in this case is to approximatelyminimize the sum of plan-
ning and execution cost. Delivery is an example. If I ask
my delivery robot to fetch me a cup of coffee, then I do
not mind if the robot sits there motionlessly and plans for
awhile, but I do care about receivingmy coffee as quickly
as possible, that is, with a small sum of planning and ex-
ecution cost. Since agents that perform agent-centered
search execute actions before they know that the actions
minimize the execution cost, they are likely to incur some
overhead in execution cost but this increase in execution
cost is often outweighed by a reduction in planning cost,
especially since determining plans with minimal execu-
tion cost is often intractable, such as for the localiza-
tion problems discussed in this article. How much (and
where) to plan can be determined automatically (even
dynamically), using either techniques tailored to spe-
cific agent-centered searchmethods (Ishida 1992) or gen-
eral techniques from limited rationality and deliberation
scheduling (Boddy and Dean 1989; Horvitz et al. 1989;
Zilberstein 1993). Applications of these techniques to
agent-centered search are described in (Russell and We-
fald 1991).

To make our discussionmore concrete, we now describe an
example of an agent-centered search method in single-agent
domains. We will relate all of the following agent-centered
search methods to this one.

Learning Real-Time A* (LRTA*) (Korf 1990) is an agent-
centered search method that stores a value in memory for
each state that it encounters during planning and uses tech-
niques from asynchronous dynamic programming (Bert-
sekas and Tsitsiklis 1997) to update the state values as plan-

Copyright: Anna Förster 2009

 Often called (mistakenly!) ants
 Small entities, traveling through the network
and gathering fresh information (e.g. routing
table entries)

 Have nothing to do with machine learning,
swarm intelligence or any other type of
intelligence!

 Good for keeping important information
fresh

Copyright: Anna Förster 2009

10/14/09

36

Summary and Property Overview

Copyright: Anna Förster 2009

ML Techniques Memory Computation Tolerance to
topology
changes

Optimality Init.costs Add.
costs

Reinforcement
Learning

low low high high medium low

Swarm
Intelligence

medium low high high high medium

Heuristics low low low/medium medium high low

Mobile Agents low low medium low low medium
/high

Neural
networks

medium medium low high high low

Genetic
algorithms

high medium low high high low

required memory
for on-node

storage

required
processing on the

node or base
station

flexibility of the
found solution to
environmental

changes

optimality of
derived solution
compared to a

centrally computed
optimal solution

required
communication or
processing costs
before starting
normal work

additional
communication or
processing costs
during runtime

Copyright: Anna Förster 2009

10/14/09

37

ML Techniques Memory Computation Tolerance to
topology
changes

Optimality Init.costs Add.
costs

Reinforcement
Learning

low low high high medium low

Swarm
Intelligence

medium low high high high medium

Heuristics low low low/medium medium high low

Mobile Agents low low medium low low medium
/high

Neural
networks

medium medium low high high low

Genetic
algorithms

high medium low high high low

Copyright: Anna Förster 2009

ML Techniques Memory Computation Tolerance to
topology
changes

Optimality Init.costs Add.
costs

Reinforcement
Learning

low low high high medium low

Swarm
Intelligence

medium low high high high medium

Heuristics low low low/medium medium high low

Mobile Agents low low medium low low medium
/high

Neural
networks

medium medium low high high low

Genetic
algorithms

high medium low high high low

Copyright: Anna Förster 2009

10/14/09

38

ML Techniques Memory Computation Tolerance to
topology
changes

Optimality Init.costs Add.
costs

Reinforcement
Learning

low low high high medium low

Swarm
Intelligence

medium low high high high medium

Heuristics low low low/medium medium high low

Mobile Agents low low medium low low medium
/high

Neural
networks

medium medium low high high low

Genetic
algorithms

high medium low high high low

Copyright: Anna Förster 2009

ML Techniques Memory Computation Tolerance to
topology
changes

Optimality Init.costs Add.
costs

Reinforcement
Learning

low low high high medium low

Swarm
Intelligence

medium low high high high medium

Heuristics low low low/medium medium high low

Mobile Agents low low medium low low medium
/high

Neural
networks

medium medium low high high low

Genetic
algorithms

high medium low high high low

Copyright: Anna Förster 2009

10/14/09

39

ML Techniques Memory Computation Tolerance to
topology
changes

Optimality Init.costs Add.
costs

Reinforcement
Learning

low low high high medium low

Swarm
Intelligence

medium low high high high medium

Heuristics low low low/medium medium high low

Mobile Agents low low medium low low medium
/high

Neural
networks

medium medium low high high low

Genetic
algorithms

high medium low high high low

Copyright: Anna Förster 2009

ML Techniques Memory Computation Tolerance to
topology
changes

Optimality Init.costs Add.
costs

Reinforcement
Learning

low low high high medium low

Swarm
Intelligence

medium low high high high medium

Heuristics low low low/medium medium high low

Mobile Agents low low medium low low medium
/high

Neural
networks

medium medium low high high low

Genetic
algorithms

high medium low high high low

Copyright: Anna Förster 2009

10/14/09

40

ML Techniques Memory Computation Tolerance to
topology
changes

Optimality Init.costs Add.
costs

Reinforcement
Learning

low low high high medium low

Swarm
Intelligence

medium low high high high medium

Heuristics low low low/medium medium high low

Mobile Agents low low medium low low medium
/high

Neural
networks

medium medium low high high low

Genetic
algorithms

high medium low high high low

Copyright: Anna Förster 2009

ML Techniques Memory Computation Tolerance to
topology
changes

Optimality Init.costs Add.
costs

Reinforcement
Learning

low low high high medium low

Swarm
Intelligence

medium low high high high medium

Heuristics low low low/medium medium high low

Mobile Agents low low medium low low medium
/high

Neural
networks

medium medium low high high low

Genetic
algorithms

high medium low high high low

Distributed problems

Centralized and localized problems

Optimization

Copyright: Anna Förster 2009

10/14/09

41

M. Dorigo and T. Stuetzle.
Ant Colony Optimization.
MIT Press, 2004.

J. Kennedy and R.C. Eberhart.
Swarm Intelligence.
Morgan Kaufmann, 2001.

T.M. Mitchell.
Machine Learning.
McGraw-Hill, 1997.

A. Förster.
Teaching Networks How to
Learn
SVH Verlag, 2009

S.J. Russell and P. Norvig.
Artificial Intelligence:
A Modern Approach.
Prentice Hall International, 2003.

R. S. Sutton and A. G. Barto.
Reinforcement Learning:
An Introduction.
The MIT Press, March 1998.

Copyright: Anna Förster 2009

10/14/09

1

Tutorial at NexTech 2009, Sliema, Malta

Dr. Anna Förster, University of Lugano, Switzerland
anna.foerster@ieee.org

Part 1:
  Introduction to Wireless Sensor Networks
 Machine Learning techniques and their
properties

Part 2:
 State of the art applications of ML to WSNs
 Discussion of further application areas and
problems

Copyright: Anna Förster 2009

10/14/09

2

State of the art

Copyright: Anna Förster 2009

 Agents: the packets
 States: the nodes
 Actions: next hops
 q‐values: estimations of routing costs
  Initial q‐values: some first guess about
routing costs

 Reward function: the best cost estimation
of the next hop

 Exploration strategy: simple, e.g. ε‐greedy

Copyright: Anna Förster 2009

10/14/09

3

Sending a packet from A to D
Init all q values to 10 (guess)

A

B

C

D

Rewards:
 r = qbest, if not sink
 r = 0, if sink
Send rewards to all neighbors

(broadcast)

Copyright: Anna Förster 2009

Sending a packet from A to D
Init all q values to 10 (guess)

A

B

C

D

QB = 10 (initial)

QC = 10 (initial)

Action selection policy
(Exploration strategy)
 ε-greedy
Balance exploration/exploitation

state Q

B 10

C 10

state Q

A 10

C 10

D 10

state Q

B 10

A 10

D 10
Copyright: Anna Förster 2009

10/14/09

4

A

B

C

D

QB = 10 (initial)

Sending a packet from A to D
Select next hop (state) B

state Q

B 10

C 10

Copyright: Anna Förster 2009

A

B

C

D

QA = 10 (initial)

Sending a packet from A to D
B has 3 possible next hops, with

qbest = 10

QC = 10 (initial)

QD = 10 (initial)

state Q

A 10

C 10

D 10

Copyright: Anna Förster 2009

10/14/09

5

A

B

C

D

Sending a packet from A to D
B selects D as next hop,

packet

state Q

A 10

C 10

D 10

Copyright: Anna Förster 2009

A

B

C

D

Sending a packet from A to D
B selects D as next hop,

reward = qbest = 10

packet
reward

reward

state Q

A 10

C 10

D 10

Copyright: Anna Förster 2009

10/14/09

6

A

B

C

D

Sending a packet from A to D
B selects D as next hop,

reward = qbest = 10

packet
reward

QB = cB + rB = 11
QC = 10

reward

QA = 10
QB = cB + rB = 11
QD = 10

state Q

A 10

C 10

D 10

Copyright: Anna Förster 2009

A

B

C

D

Sending a packet from A to D
B selects D as next hop,

reward = qbest = 10

packet
reward

QB = cB + rB = 11

reward

QB = cB + rB = 11

state Q

A 10

C 10

D 10

state Q

B 11

C 10

state Q

B 11

A 10

D 10
Copyright: Anna Förster 2009

10/14/09

7

A

B

C

D

Sending a packet from A to D
D is the sink, goal reached

Copyright: Anna Förster 2009

A

B

C

D

Sending a packet from A to D
D is the sink, goal reached

reward = 0 (real costs)

reward

reward

Copyright: Anna Förster 2009

10/14/09

8

A

B

C

D

Sending a packet from A to D
D is the sink, goal reached

reward = 0 (real costs)

reward

QD = cB + rB = 1

QD = cB + rB = 1

reward

state Q

A 10

C 10

D 1

state Q

B 11

A 10

D 1
Copyright: Anna Förster 2009

A

B

C

D

Sending a packet from A to D
State of the network after first

packet

state Q

B 11

C 10

state Q

A 10

C 10

D 1

state Q

B 11

A 10

D 1
Copyright: Anna Förster 2009

10/14/09

9

A

B

C

D

Sending a packet from A to D
State of the network after many

packets

state Q

B 2

C 2

state Q

A 3

C 2

D 1

state Q

B 2

A 3

D 1

How to go faster?
Make better guesses!

Copyright: Anna Förster 2009

 Simple and powerful
 Reacts immediately to changes:

 New rewards propagate quickly

 New routes are learnt

 Only necessary changes in the immediate
neighborhood of failure

 Route initialization is sink/source driven
 Low memory and processing overhead

Copyright: Anna Förster 2009

10/14/09

10

 Hops: too trivial to deserve a publication…
 Maximum aggregation rate:
P. Beyens, M. Peeters, K. Steenhaut, and A. Nowe. Routing with compression in

wireless sensor networks: A Q‐learning approach. In Proceedings of the 5th
European Workshop on Adaptive Agents and Multi‐Agent Systems (AAMAS),
page 12pp., Paris, France, 2005.

 Combined with geographic routing:
R. Arroyo‐Valles, R. Alaiz‐Rodrigues, A. Guerrero‐Curieses, and J. Cid‐ Suiero.

 Q‐probabilistic routing in wireless sensor networks. In Proceedings of the 3rd
International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), pages 1–6, Melbourne, Australia, 2007.

 Minimum delay:
J. A. Boyan and M. L. Littman. Packet routing in dynamically changing networks:

 A reinforcement learning approach. Advances in Neural Information Processing
Systems, 6:671–678, 1994.

Copyright: Anna Förster 2009

  Challenges:
  Actions need to reflect not the next

hop, but HOPS
  Reward function is distributed among

several neighbors
  Set of actions very large – needs a lot of

exploration!
  Solution steps:

  Separate actions into sub‐actions
  Smart initial Q values

A

B

C
D

A. Förster and A. L. Murphy.
FROMS: Feedback routing for optimizing multiple sinks in WSN with
reinforcement learning.
In Proceedings 3rd International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP), pp. 371–376, Australia, 2007.

Copyright: Anna Förster 2009

10/14/09

11

Copyright: Anna Förster 2009

  Localized view after sink announcement

  The minimum estimated is not the optimal:
  best estimate for (A,B): 3 + 3 ‐ 1 = 5 hops
  optimal for (A,B): 4 hops

A - 5 hops
B - 3 hops

A - 3 hops
B - 5 hops

2
1 3

A B

A - 4 hops
B - 4 hops

st+1, Qt+1 environment agent

rt(st,at)

at

st, At, Qt

Copyright: Anna Förster 2009

agent

st+1, Qt+1 environment agent

rt(st,at)

at

st, At, Qt

  Agent: each node in the network

10/14/09

12

Copyright: Anna Förster 2009

agent

st+1, Qt+1 environment agent

rt(st,at)

at

st, At, Qt

  Agent: each node in the network
  State: agent’s neighbors

Copyright: Anna Förster 2009

2
1 3

agent
for sink A for sink B

ai = {n1 for A}, {n3 for B}
Actions:

aj = {n2 for A,B}

for sinks A, B

sub-actions

st+1, Qt+1 environment agent

rt(st,at)

at

st, At, Qt

  Agent: each node in the network
  State: agent’s neighbors
  Possible actions: combination of neighbors to reach

all sinks

10/14/09

13

Copyright: Anna Förster 2009

2
1 3

for sink A for sink B

for sinks A, B
Q(n2, {A,B})

Q(n3, {B}) Q(n1, {A})

st+1, Qt+1 environment agent

rt(st,at)

at

st, At, Qt

  Agent: each node in the network
  State: agent’s neighbors
  Possible actions: combination of neighbors
  Q Values: associate with

  each sub‐action
  computable for each (full) action

Copyright: Anna Förster 2009

2
1 3

for sinks A (4 hops)
B (4 hops)

Q(n2, {A,B}) = 4+4-1

st+1, Qt+1 environment agent

rt(st,at)

at

st, At, Qt

  Agent: each node in the network
  State: agent’s neighbors
  Possible actions: combination of neighbors
  Q Values: associate with sub‐actions,

compute for actions

  Initialize Q Values with number of estimated hops

10/14/09

14

Copyright: Anna Förster 2009

2
1 3

st+1, Qt+1 environment agent

rt(st,at)

at

st, At, Qt

  Agent: each node in the network
  State: agent’s neighbors
  Possible actions: combination of neighbors
  Q Values: associate with sub‐actions,

compute for actions

  Initialize Q Values with number of estimated hops
  Environment: all other nodes

Copyright: Anna Förster 2009

2
1 3

for sinks A,B

st+1, Qt+1 environment agent

rt(st,at)

at

st, At, Qt

  Agent: each node in the network
  State: agent’s neighbors
  Possible actions: combination of
  Q Values: associate with sub‐actions,

compute for actions

  Initialize Q Values with number of estimated hops
  Environment: all other nodes

10/14/09

15

Copyright: Anna Förster 2009

2
1 3

  Agent: each node in the network
  State: agent’s neighbors
  Possible actions: combination of
  Q Values: associate with sub‐actions,

compute for actions

  Initialize Q Values with number of estimated hops
  Environment: all other nodes
  Reward: the best available Q value + 1 hop

for sinks A,B

 i

st+1, Qt+1 environment agent

rt(st,at)

at

st, At, Qt

environment agent

Copyright: Anna Förster 2009

2
1 3

  Agent: each node in the network
  State: agent’s neighbors
  Possible actions: combination of
  Q Values: associate with sub‐actions,

compute for actions

  Initialize Q Values with number of estimated hops
  Environment: all other nodes
  Reward: the best available Q value + 1 hop
  Update at neighboring nodes (learn)

for sinks A,B

 i

st+1, Qt+1

rt(st,at)

at

st, At, Qt

exploration strategy

update rules

reward computation

10/14/09

16

  Possible cost functions:
  Any cost function defined over the edges or

nodes of the communication graph
  Here: minimum hops to destinations
  Further: minimum delay to the sinks;

minimum geographic progress; minimum
transmission power; maximum remaining
energy on the nodes; combinations; …

  Exploration strategy
  Balance exploration against exploitation
  Depend on the used cost function

  Memory management
  Heuristics for pruning the available actions

and sub‐actions

Copyright: Anna Förster 2009

st+1, Qt+1 environment agent

rt(st,at)

at

st, At, Qt

 Clustering for WSNs:
Anna Förster and Amy L. Murphy, Clique: Role‐free Clustering with Q‐Learning for

Wireless Sensor Networks, in Proceedings of the 29th International Conference
on Distributed Computing Systems (ICDCS) 2009, 9pp., Canada, June 2009

 MAC protocols:
Z. Liu and I. Elahanany. RL‐MAC: A reinforcement learning based MAC protocol for

wireless sensor networks. International Journal on Sensor Networks, 1(3/4):117–
124, 2006.

 Best coverage:
M.W.M. Seah, C.K. Tham, K. Srinivasan, and A. Xin. Achieving coverage through

distributed reinforcement learning in wireless sensor networks. In Proceedings
of the 3rd International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), 2007.

Copyright: Anna Förster 2009

10/14/09

17

Take away

Copyright: Anna Förster 2009

State of the art

Copyright: Anna Förster 2009

10/14/09

18

8 Wireless Sensor Networks

Table 1: Used link samples features in MetricMap (Wang et al., 2006).

RSSI received signal strength indication local
sendBuf send buffer size local
fwdBuf forward buffer size local
depth node depth from base station non-local
CLA channel load assessment local
pSend forward probability local
pRecv backward probability local

testbed at MIT together with all available features. Table 1 lists the features for their link sam-
ples. Each link sample was labeled “good” or “bad”, according to its Link Quality Indication
(LQI) value.

LQI is an indicator of the strength and quality of a received packet, introduced in the
802.15.4 standard and provided by the CC2420 radios of the MicaZ nodes in MistLab. Mea-
surement studies with LQI have shown it is a reliable metric when estimating link quality.
However, LQI is available only after sending the packet. It is not available for estimating the
future quality of some link before any packets are sent.

The training set, consisting of labeled link samples, was used to compute offline a decision
tree, which classifies the links as good or bad, based on the features from Table 1. The output of
the decision tree learner is presented in Figure 4 (a), together with classification results from
the training phase in the format: (total samples in category / false positive classifications).
The authors have used the Weka workbench (Witten & Frank, 2005), which contains many
different implementations of machine learning techniques, including the C4.5 algorithm for
decision tree learning (see Section 2.1).

The acquired rules are used to instrument the original implementation of MintRoute. In
a comparative experimental evaluation on a testbed the authors showed that MetricMap out-
performs MintRoute significantly in terms of delivery rate and fairness, see Figure 4 (b) and
(c). MetricMap also does not incur any additional processing overhead, since the evaluation
of the decision tree is straightforward.

3.2 Discussion of MetricMap

The authors of MetricMap have clearly shown that supervised learning approaches are easy
to implement and use in a wireless sensor network environment and significantly improve
the routing performance of a real system. Similar approaches can be easily applied to other
testbeds and real deployments. The only requirement is that the general communication prop-
erties of the network do not change over time. This could be particularly challenging in out-
door environments, where weather, temperature, sunlight, etc., influence the wireless com-
munications. Detailed and long-running experiments under changing climate conditions are
necessary to prove the applicability of MetricMap-similar routing optimizations. However,
the expectation is that the offline learning procedure needs to be re-run in order to adapt to
the changing environment, which can be very costly. In case this hypothesis proves to be
true, distributed methods for automatic link quality estimation need to be developed. On the
other hand, implementing decision tree or rule-based learning on sensor nodes seems to be
practical, since these techniques do not have high memory or processing requirements.

MetricMap
Wang, Y., Martonosi, M. & Peh, L.‐S. (2006). A supervised learning approach for

routing optimizations in wireless sensor networks, Proceedings of the 2nd
International Workshop on Multi‐hop ad hoc networks: from theory to reality
(REALMAN), Florence, Italy, pp. 79–86.

 Gathers information about links
 Uses LQI (Link Quality Indication) to classify
links as good or bad

Copyright: Anna Förster 2009

Machine Learning Across the WSN Layers 9

JRip J4.8
Class TP rate FP rate TP rate FP rate

a 0.837 0.131 0.841 0.133
b 0.722 0.115 0.712 0.103
c 0.869 0.041 0.885 0.046

Table 2: Detailed accuracy breakdown for all classes.

the number of samples collected from a non-congested network is

far more than those collected from a congested network, with the

same sample collection period. Hence, we use longer collection

periods under high traffic loads in order to collect enough samples

from a wide range of conditions.

3.3 Step 3: Offline Training
Our learning and validation experiment is performed onWeka [25],

a workbench containing implementations of a variety of standard

machine learning algorithms. We use the J4.8 algorithm provided

with Weka for decision tree learning and JRip algorithm for rule

learning. J4.8 implements an improved version of the C4.5 algo-

rithm [22] and JRip [8] implements Repeated Incremental Pruning

to Produce Error Reduction (RIPPER), a propositional rule learner.

C4.5 is one of the most widely studied and used decision tree algo-

rithms in the literature.

As with most data-intensive machine learning algorithms, it is

important to avoid having the classifier memorize, or overfit, the

training data. We use cross validation and tree pruning in Weka

to reduce such effects. Cross validation is a standard method to

estimate classification accuracy over unseen data. We use 10-fold

cross validation in our experiments. The available data is divided

into ten equal-sized blocks. Nine of the blocks are randomly chosen

and used for training a classifier, with the remaining block used

for validation. This process is repeated 10 times to give a reliable

measure of classification accuracy, which is 82% using J4.8 and

80% using JRip for our evaluation on MoteLab.

Table 2 shows the TP rate and FP rate of a three-class classi-

fier for both JRip and J4.8, using the same link quality estimation

dataset with 10-fold cross validation. For both algorithms, the FP

rate of class c is lower than 5%, which means that the probabil-
ity of classifying a bad link as either a good or median one is low.

In the context of link-quality aware routing, the cost of such mis-

classification is high and both JRip and J4.8 work well in this as-

pect.

3.4 Discussion
Selection of learning algorithms. As mentioned earlier, we

have tested a range of classifiers trying to get a feeling of the best

accuracy we can achieve for this specific problem. Based on empir-

ical results, decision tree learners have the highest accuracy in most

cases among all learners considered. The accuracy of rule learners

is very close to that of decision tree learners. Since the outputs of

rule learners are usually very compact, which is a crucial factor to

consider in performing classifications on motes, all the experiments

in Section 5 use rule learners.

Selection of features. The impact of feature selection to learning

accuracy, memory footprint and FP rate of class c (bad) is demon-
strated in Table 3. In particular, it compares the accuracy using all

7 features to the accuracy of using only one feature. Clearly, using

more features results in a higher accuracy than using just one. This

supports our motivation to study more features.

Hardware dependency. Although our supervised classification

process requires a manual method to label link quality, it is not

dependent on any particular metric, such as LQI available only on

rssi <= 212
| depth <= 5
| | rssi <= 211: bad (320.0/37.0)
| | rssi > 211: good (79.0/34.0)
| depth > 5: bad (425.0/31.0)
rssi > 212
| rssi <= 223
| | cla <= 116
| | | depth <= 3: good (352.0/82.0)
| | | depth > 3
| | | | depth <= 4
| | | | | rssi <= 220: bad (49.0/1.0)
| | | | | rssi > 220
| | | | | | cla <= 8: good (69.0/29.0)
| | | | | | cla > 8: bad (14.0/4.0)
| | | | depth > 4
| | | | | depth <= 6
| | | | | | rssi <= 216
| | | | | | | depth <= 5: good (198.0/71.0)
| | | | | | | depth > 5
| | | | | | | | rssi <= 214: bad (8.0/1.0)
| | | | | | | | rssi > 214
| | | | | | | | | sendbuf <= 0
| | | | | | | | | | cla <= 21: bad (29.0/13.0)
| | | | | | | | | | cla > 21: good (2.0)
| | | | | | | | | sendbuf > 0: good (2.0)
| | | | | | rssi > 216: good (178.0/34.0)
| | | | | depth > 6
| | | | | | rssi <= 219
| | | | | | | rssi <= 215: good (157.0/55.0)
| | | | | | | rssi > 215
| | | | | | | | depth <= 7
| | | | | | | | | rssi <= 217: bad (129.0/29.0)
| | | | | | | | | rssi > 217
| | | | | | | | | | cla <= 0: good (20.0/6.0)
| | | | | | | | | | cla > 0: bad (12.0/3.0)
| | | | | | | | depth > 7
| | | | | | | | | rssi <= 217: good (37.0/17.0)
| | | | | | | | | rssi > 217
| | | | | | | | | | cla <= 0: bad (21.0/3.0)
| | | | | | | | | | cla > 0: good (2.0)
| | | | | | rssi > 219
| | | | | | | depth <= 7
| | | | | | | | cla <= 3: good (102.0/35.0)
| | | | | | | | cla > 3: bad (30.0/12.0)
| | | | | | | depth > 7: good (85.0/17.0)
| | cla > 116: good (62.0/8.0)
| rssi > 223: good (275.0/38.0)

Figure 3: A sample decision tree output from Weka using a

binary model for labeling. Each line represents one conditional

branch in the tree. The pair of number (m / n) behind the label
on each line means that there are a total of m instances that

reach that leaf, of which n is classified incorrectly.

7-feature 1-feature 1-feature
(RSSI) (pSend)

accuracy 80.8% 70.5% 69.3%
overhead 16 rules 4 rules 20 rules
bad FP rate 4.0% 3.9% 4.1%

Table 3: Impact of feature selection.

802.15.4 radios. Any other available metric, if indicative of link

quality, can also be used for labeling.

4. CASE STUDY
In this section, we present a case study to illustrate how super-

vised learning techniques can be leveraged to improve the perfor-

mance of link-quality aware collection routing protocols in con-

gested wireless sensor networks.

MintRoute is a collection routing protocol that uses ETX to con-

struct routing topologies. As shown in Figure 1, MintRoute fails

to find parents in congested networks, using snooping-based link

quality estimation. However, if a parent can be identified based on

other available information regarding link delivery capability, rout-

ing can be resumed and orphan nodes will be salvaged. We pro-

pose MetricMap, an alternative to MintRoute that establishes link

quality estimations using offline trained classifiers to address this

problem.

MetricMap consists of two components. The first component

controls the update of all features which is triggered either by packet

83

(a)

Our classifier can mitigate such problems by discerning meaningful

link information without imposing any additional traffic. Once the

routing structure is restored, data collection can be resumed imme-

diately. Therefore, MetricMap allows more nodes to deliver their

data to the sink, which results in a higher fairness index. In con-

trast, with MintRoute, a few nodes deliver most of their packets

while the rest have only a small fraction of their packets delivered.

In summary, MetricMap addresses the high data rate challenge

with a different perspective, compared to congestion control mech-

anisms [23, 24, 11]. Therefore, our approach is orthogonal to theirs

and combining them will potentially achieve further performance

improvement.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

P
a

c
k
e

t
d

e
liv

e
ry

 r
a

te
 (

%
)

Offered load (pps)

MetricMap
MintRoute

Figure 5: Average success rate versus per-sensor load using a

periodic workload.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

m
s
)

Offered load (pps)

MetricMap
MintRoute

Figure 6: Average packet latency versus per-sensor load using

a periodic workload.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

F
a

ir
n

e
s
s

Offered load (pps)

MetricMap
MintRoute

Figure 7: Fairness versus per-sensor load using a periodic

workload.

Since MetricMap needs to keep local metrics that are used as in-

put to the classifier, it requires some extra memory usage. We use

the memory footprint of MetricMap as a measure of overhead, as

Component ROM (Flash) RAM

Surge+MintRoute 16570 1971
Surge+MetricMap 18468 2110

Table 4: Code and memory usage comparisons of MintRoute

and MetricMap on MicaZ. RAM is memory usage in bytes and

ROM is program size in bytes.

 0

 0.5

 1

 1.5

 2

 2.5

PDR Latency Fairness

Im
p

ro
v
e

m
e

n
t

RSSI
MetricMap

Performance metrics

Figure 8: Performance improvement comparison with

heuristics-based approach.

shown in Table 4. Table 4 shows the actual memory footprint of

MintRoute and MetricMap. The increase in program size is 11.5%,

which is used mostly for implementing the classifier. The increase

in static memory size is 7.1%, which is mostly data structures used

for collecting and converting low-level metrics to input of the clas-

sifier. This is a small increase from the original code and memory

footprint.

Our results so far have shown that MetricMap produces consis-

tently higher performance than MintRoute when traffic rate is high.

To understand if such benefits come from a better selection of good

quality links, we further compare MetricMap with another data col-

lection protocol — RSSI. RSSI uses the RSSI values of received

packets over a link as the only indication of its quality. If the re-

cent received packets have higher RSSI values compared to other

links, the protocol will assign a higher quality value to this link than

other ones. Other than that, RSSI is the same as MintRoute. Thus,

RSSI does not take into account of any factors other than packet

RSSI values and is one such protocol that makes its estimation us-

ing heuristics.

Figure 8 shows the average improvement of RSSI andMetricMap

over 5 independent testbed runs, using the performance ofMintRoute

as the base line. For example, the improvement of protocol R S S I
in terms of packet delivery rate is calculated as

p R S S I − p M i n t R o u t e
p M i n t R o u t e

.

The figure shows that MetricMap has a higher performance in terms

of packet delivery rate and fairness index, compared to RSSI. Since

MetricMap uses more features to make link quality estimation, it

potentially will find better links that have the capability to deliver

more traffic. There is a minor increase in data latency for both

protocols. This is because both RSSI and MetricMap deliver more

packets thanMintRoute and these packets usually have longer num-

ber of hops to traverse.

6. RELATEDWORK
Significant work has been done to achieve the ability to rapidly

observe, decide and react to the dynamics in wireless sensor net-

works, where a wide range of network conditions exist. Most pre-

vious work either uses “rule of thumb” focusing on a single metric

that may lose useful information or mislead the understanding of

situations, or uses sophisticated heuristics that takes a lot of ex-

85

Our classifier can mitigate such problems by discerning meaningful

link information without imposing any additional traffic. Once the

routing structure is restored, data collection can be resumed imme-

diately. Therefore, MetricMap allows more nodes to deliver their

data to the sink, which results in a higher fairness index. In con-

trast, with MintRoute, a few nodes deliver most of their packets

while the rest have only a small fraction of their packets delivered.

In summary, MetricMap addresses the high data rate challenge

with a different perspective, compared to congestion control mech-

anisms [23, 24, 11]. Therefore, our approach is orthogonal to theirs

and combining them will potentially achieve further performance

improvement.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

P
a
ck

e
t
d
e
liv

e
ry

 r
a
te

 (
%

)

Offered load (pps)

MetricMap
MintRoute

Figure 5: Average success rate versus per-sensor load using a

periodic workload.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
ve

ra
g
e
 la

te
n
cy

 (
m

s)

Offered load (pps)

MetricMap
MintRoute

Figure 6: Average packet latency versus per-sensor load using

a periodic workload.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

F
a
ir
n
e
ss

Offered load (pps)

MetricMap
MintRoute

Figure 7: Fairness versus per-sensor load using a periodic

workload.

Since MetricMap needs to keep local metrics that are used as in-

put to the classifier, it requires some extra memory usage. We use

the memory footprint of MetricMap as a measure of overhead, as

Component ROM (Flash) RAM

Surge+MintRoute 16570 1971
Surge+MetricMap 18468 2110

Table 4: Code and memory usage comparisons of MintRoute

and MetricMap on MicaZ. RAM is memory usage in bytes and

ROM is program size in bytes.

 0

 0.5

 1

 1.5

 2

 2.5

PDR Latency Fairness

Im
p
ro

ve
m

e
n
t

RSSI
MetricMap

Performance metrics

Figure 8: Performance improvement comparison with

heuristics-based approach.

shown in Table 4. Table 4 shows the actual memory footprint of

MintRoute and MetricMap. The increase in program size is 11.5%,

which is used mostly for implementing the classifier. The increase

in static memory size is 7.1%, which is mostly data structures used

for collecting and converting low-level metrics to input of the clas-

sifier. This is a small increase from the original code and memory

footprint.

Our results so far have shown that MetricMap produces consis-

tently higher performance than MintRoute when traffic rate is high.

To understand if such benefits come from a better selection of good

quality links, we further compare MetricMap with another data col-

lection protocol — RSSI. RSSI uses the RSSI values of received

packets over a link as the only indication of its quality. If the re-

cent received packets have higher RSSI values compared to other

links, the protocol will assign a higher quality value to this link than

other ones. Other than that, RSSI is the same as MintRoute. Thus,

RSSI does not take into account of any factors other than packet

RSSI values and is one such protocol that makes its estimation us-

ing heuristics.

Figure 8 shows the average improvement of RSSI andMetricMap

over 5 independent testbed runs, using the performance ofMintRoute

as the base line. For example, the improvement of protocol R S S I
in terms of packet delivery rate is calculated as

p R S S I − p M i n t R o u t e
p M i n t R o u t e

.

The figure shows that MetricMap has a higher performance in terms

of packet delivery rate and fairness index, compared to RSSI. Since

MetricMap uses more features to make link quality estimation, it

potentially will find better links that have the capability to deliver

more traffic. There is a minor increase in data latency for both

protocols. This is because both RSSI and MetricMap deliver more

packets thanMintRoute and these packets usually have longer num-

ber of hops to traverse.

6. RELATEDWORK
Significant work has been done to achieve the ability to rapidly

observe, decide and react to the dynamics in wireless sensor net-

works, where a wide range of network conditions exist. Most pre-

vious work either uses “rule of thumb” focusing on a single metric

that may lose useful information or mislead the understanding of

situations, or uses sophisticated heuristics that takes a lot of ex-

85

(b)

(c)

Figure 4: The computed decision tree for estimating link quality (a) and obtained experimental
results with MetricMap and MintRoute in terms of delivery rate (b) and fairness (c).

4. Routing Layer

The challenge of routing refers to the general problem of relaying a data packet from one node
in the network to another one, where direct communication between the nodes is impossible.
The problem is also known as multi-hop routing, referring to the fact that usually multiple
intermediate nodes are used to relay the data packet to its destination. A routing protocol
identifies the sequence of intermediate nodes to ensure delivery of the packet. Additionally, a
differentiation between unicast and multicast routing protocols exists. Unicast protocols route
the data packet from a single source to a single destination, while multicast routing protocols
route the data packet to multiple destinations simultaneously.

There is a huge research body on routing for WSNs and generally for wireless ad hoc
networks. The main challenges are managing unreliable communication links, node failures
and node mobility, and, most importantly, using energy efficiently. Although many routing
protocols for WSNs have been developed and evaluated, there are only a few which efficiently
use the network resources and are able to meet all of the above challenges simultaneously.
Well-known unicast routing paradigms for WSNs are for example Directed Diffusion (Silva
et al., 2003) and MintRoute (Woo et al., 2003), which select shortest paths based on hops,

RSSI value is the root!

Three initial
features ignored:
fwdBuffer, sendP
and recP

Copyright: Anna Förster 2009

10/14/09

19

 Classification of any localized, relatively static
properties:
 Battery levels
 Network conditions
 Channel load
 Node status
 …

 A lot of future work!

Copyright: Anna Förster 2009

Take away

Copyright: Anna Förster 2009

10/14/09

20

State of the art

Copyright: Anna Förster 2009

  Route discovery: forward ants

  Route discovery: backward ants

• Local work: In contrast to other routing approaches,
the ant colony optimization meta-heuristic is based

only on local information, i.e., no routing tables or

other information blocks have to be transmitted to

neighbors or to all nodes of the network.

• Link quality: It is possible to integrate the con-

nection/link quality into the computation of the

pheromone concentration, especially into the evapora-

tion process. This will improve the decision process

with respect to the link quality. It is here important

to notice, that the approach has to be modified so that

nodes can also manipulate the pheromone concentra-

tion independent of the ants, i.e. data packets, for this

a node has to monitor the link quality.

• Support for multi-path: Each node has a routing ta-
ble with entries for all its neighbors, which contains

also the pheromone concentration. The decision rule,

to select the next node, is based on the pheromone con-

centration on the current node, which is provided for

each possible link. Thus, the approach supports multi-

path routing.

3. The Routing Algorithm

In this section we discuss the adaptation of the ant colony

optimization meta-heuristic for mobile ad-hoc networks and

describe the Ant colony based Routing Algorithm (ARA).

The routing algorithm is very similar constructed as many

other routing approaches and consists of three phases.

3.1. Route Discovery Phase

In the route discovery phase new routes are created. The

creation of new routes requires the use of a forward ant

(FANT) and a backward ant (BANT). A FANT is an agent

which establishes the pheromone track to the source node.

In contrast, a BANT establishes the pheromone track to the

destination node. The FANT is a small packet with a unique

sequence number. Nodes are able to distinguish duplicate

packets on the basis of the sequence number and the source

address of the FANT.

A forward ant is broadcasted by the sender and will be

relayed by the neighbors of the sender (see figure 2). A node

receiving a FANT for the first time, creates a record in its

routing table. A record in the routing table is a triple and

consists of (destination address, next hop,

pheromone value). The node interprets the source ad-

dress of the FANT as destination address, the address of the

previous node as the next hop, and computes the pheromone

value depending on the number of hops the FANT needed to

reach the node. Then the node relays the FANT to its neigh-

bors. Duplicate FANTs are identified through the unique

5

S 4

2

1

D

3
6

F

F

F

F

F

F

F F

Figure 2. Route discovery phase. A forward

ant (F) is send from the sender (S) toward

the destination node (D). The forward ant is

relayed by other nodes, which initialize their

routing table and the pheromone values.

sequence number and destroyed by the nodes. When the

FANT reaches the destination node, it is processed in a spe-

cial way. The destination node extracts the information of

the FANT and destroys it. Subsequently, it creates a BANT

and sends it to the source node (see figure 3). The BANT

has the same task as the FANT, i.e. establishing a track to

this node. When the sender receives the BANT from the

destination node, the path is established and data packets

can be sent.

5

S 4

2

1

D

3
6

B

B

B

B

B

B B

Figure 3. Route discovery phase. The back-

ward ant (B) has the same task as the forward

ant. It is send by the destination node toward

the source node.

Figures 2 and 3 schematically depict the route discov-

ery phase. In the depicted case, node 3 has two ways for

the path, via node 4 and over node 6. In our case, the

forward ant creates only one pheromone track toward the

source node, but the backward ant creates two pheromone

tracks toward the destination node. So multi-path routing is

also supported by ARA.

3.2. Route Maintenance

The second phase of the routing algorithm is called route

maintenance, which is responsible for the improvement of

the routes during the communication. ARA does not need

any special packets for route maintenance. Once the FANT

and BANT have established the pheromone tracks for the

3

• Local work: In contrast to other routing approaches,
the ant colony optimization meta-heuristic is based

only on local information, i.e., no routing tables or

other information blocks have to be transmitted to

neighbors or to all nodes of the network.

• Link quality: It is possible to integrate the con-

nection/link quality into the computation of the

pheromone concentration, especially into the evapora-

tion process. This will improve the decision process

with respect to the link quality. It is here important

to notice, that the approach has to be modified so that

nodes can also manipulate the pheromone concentra-

tion independent of the ants, i.e. data packets, for this

a node has to monitor the link quality.

• Support for multi-path: Each node has a routing ta-
ble with entries for all its neighbors, which contains

also the pheromone concentration. The decision rule,

to select the next node, is based on the pheromone con-

centration on the current node, which is provided for

each possible link. Thus, the approach supports multi-

path routing.

3. The Routing Algorithm

In this section we discuss the adaptation of the ant colony

optimization meta-heuristic for mobile ad-hoc networks and

describe the Ant colony based Routing Algorithm (ARA).

The routing algorithm is very similar constructed as many

other routing approaches and consists of three phases.

3.1. Route Discovery Phase

In the route discovery phase new routes are created. The

creation of new routes requires the use of a forward ant

(FANT) and a backward ant (BANT). A FANT is an agent

which establishes the pheromone track to the source node.

In contrast, a BANT establishes the pheromone track to the

destination node. The FANT is a small packet with a unique

sequence number. Nodes are able to distinguish duplicate

packets on the basis of the sequence number and the source

address of the FANT.

A forward ant is broadcasted by the sender and will be

relayed by the neighbors of the sender (see figure 2). A node

receiving a FANT for the first time, creates a record in its

routing table. A record in the routing table is a triple and

consists of (destination address, next hop,

pheromone value). The node interprets the source ad-

dress of the FANT as destination address, the address of the

previous node as the next hop, and computes the pheromone

value depending on the number of hops the FANT needed to

reach the node. Then the node relays the FANT to its neigh-

bors. Duplicate FANTs are identified through the unique

5

S 4

2

1

D

3
6

F

F

F

F

F

F

F F

Figure 2. Route discovery phase. A forward

ant (F) is send from the sender (S) toward

the destination node (D). The forward ant is

relayed by other nodes, which initialize their

routing table and the pheromone values.

sequence number and destroyed by the nodes. When the

FANT reaches the destination node, it is processed in a spe-

cial way. The destination node extracts the information of

the FANT and destroys it. Subsequently, it creates a BANT

and sends it to the source node (see figure 3). The BANT

has the same task as the FANT, i.e. establishing a track to

this node. When the sender receives the BANT from the

destination node, the path is established and data packets

can be sent.

5

S 4

2

1

D

3
6

B

B

B

B

B

B B

Figure 3. Route discovery phase. The back-

ward ant (B) has the same task as the forward

ant. It is send by the destination node toward

the source node.

Figures 2 and 3 schematically depict the route discov-

ery phase. In the depicted case, node 3 has two ways for

the path, via node 4 and over node 6. In our case, the

forward ant creates only one pheromone track toward the

source node, but the backward ant creates two pheromone

tracks toward the destination node. So multi-path routing is

also supported by ARA.

3.2. Route Maintenance

The second phase of the routing algorithm is called route

maintenance, which is responsible for the improvement of

the routes during the communication. ARA does not need

any special packets for route maintenance. Once the FANT

and BANT have established the pheromone tracks for the

3

Mesut Günes; Udo Sorges & Imed Bouazizi.
ARA ‐ The Ant‐Colony Based Routing Algorithm for MANETs. Proceedings of the 2002 ICPP Workshop
on Ad Hoc Networks (IWAHN 2002), Los Alamitos, CA, USA, 2002.

10/14/09

21

  Choosing next hop:

  Probabilities of next hops sum to 1:

  Leave pheromone when choosing an edge:

  Decrease pheromone level with time (evaporate):

some simulation results to show the ability of the approach.

Finally, a conclusion is given in section 5.

2. Basics and Background

The ant colony optimization meta-heuristic is a particu-

lar class of ant algorithms. Ant algorithms are multi-agent

systems, which consist of agents with the behavior of indi-

vidual ants, see [3, 1] for more information.

Figure 1. All ants take the shortest path after

an initial searching time.

2.1. Basic ant algorithm

The basic idea of the ant colony optimization meta

heuristic is taken from the food searching behavior of real

ants. When ants are on they way to search for food, they

start from their nest and walk toward the food. When an

ant reaches an intersection, it has to decide which branch to

take next. While walking, ants deposit pheromone1, which

marks the route taken. The concentration of pheromone on

a certain path is an indication of its usage. With time the

concentration of pheromone decreases due to diffusion ef-

fects. This property is important because it is integrating

dynamic into the path searching process.

Figure 1 shows a scenario with two routes from the nest

to the food place. At the intersection, the first ants randomly

select the next branch. Since the below route is shorter than

the upper one, the ants which take this path will reach the

food place first. On their way back to the nest, the ants again

have to select a path. After a short time the pheromone con-

centration on the shorter path will be higher than on the

longer path, because the ants using the shorter path will

increase the pheromone concentration faster. The shortest

path will thus be identified and eventually all ants will only

use this one.

This behavior of the ants can be used to find the short-

est path in networks. Especially, the dynamic component of

this method allows a high adaptation to changes in mobile

ad-hoc network topology, since in these networks the ex-

istence of links are not guaranteed and link changes occur

very often.

1Pheromone is a kind of cumarin, which ants are able to smell.

2.2. Simple ant colony optimization meta-heuristic
algorithm

Let G = (V,E) be a connected graph with n = |V |
nodes. The simple ant colony optimization meta-heuristic

can be used to find the shortest path between a source node

vs and a destination node vd on the graph G. The path
length is given by the number of nodes on the path. Each

edge e(i, j) ∈ E of the graph connecting the nodes vi and

vj has a variable ϕi,j (artificial pheromone), which is mod-

ified by the ants when they visit the node. The pheromone

concentration, ϕi,j is an indication of the usage of this edge.

An ant located in node vi uses pheromone ϕi,j of node

vj ∈ Ni to compute the probability of node vj as next hop.

Ni is the set of one-step neighbors of node vi.

pi,j =

{ ϕi,j∑
j∈Ni

ϕi,j
if j ∈ Ni

0 if j /∈ Ni

The transition probabilities pi,j of a node vi fulfill the

constraint:

∑

j∈Ni

pi,j = 1, i ∈ [1, N]

During the route finding process, ants deposit

pheromone on the edges. In the simple ant colony

optimization meta-heuristic algorithm, the ants deposit a

constant amount ∆ϕ of pheromone. An ant changes the

amount of pheromone of the edge e(vi, vj) when moving
from node vi to node vj as follows:

ϕi,j := ϕi,j + ∆ϕ (1)

Like real pheromone the artificial pheromone concentra-

tion decreases with time to inhibit a fast convergence of

pheromone on the edges. In the simple ant colony opti-

mization meta-heuristic, this happens exponentially:

ϕi,j := (1 − q) · ϕi,j , q ∈ (0, 1] (2)

2.3. Why ant colony optimization meta-heuristic
suits to ad-hoc networks

The simple ant colony optimization meta-heuristic

shown in the previous section illustrates different reasons

why this kind of algorithms could perform well in mobile

multi-hop ad-hoc networks. We will discuss various rea-

sons by considering important properties of mobile ad-hoc

networks.

• Dynamic topology: This property is responsible for
the bad performance of several routing algorithms in

mobile multi-hop ad-hoc networks. The ant colony

optimization meta-heuristic is based on agent systems

and works with individual ants. This allows a high

adaptation to the current topology of the network.

2

some simulation results to show the ability of the approach.

Finally, a conclusion is given in section 5.

2. Basics and Background

The ant colony optimization meta-heuristic is a particu-

lar class of ant algorithms. Ant algorithms are multi-agent

systems, which consist of agents with the behavior of indi-

vidual ants, see [3, 1] for more information.

Figure 1. All ants take the shortest path after

an initial searching time.

2.1. Basic ant algorithm

The basic idea of the ant colony optimization meta

heuristic is taken from the food searching behavior of real

ants. When ants are on they way to search for food, they

start from their nest and walk toward the food. When an

ant reaches an intersection, it has to decide which branch to

take next. While walking, ants deposit pheromone1, which

marks the route taken. The concentration of pheromone on

a certain path is an indication of its usage. With time the

concentration of pheromone decreases due to diffusion ef-

fects. This property is important because it is integrating

dynamic into the path searching process.

Figure 1 shows a scenario with two routes from the nest

to the food place. At the intersection, the first ants randomly

select the next branch. Since the below route is shorter than

the upper one, the ants which take this path will reach the

food place first. On their way back to the nest, the ants again

have to select a path. After a short time the pheromone con-

centration on the shorter path will be higher than on the

longer path, because the ants using the shorter path will

increase the pheromone concentration faster. The shortest

path will thus be identified and eventually all ants will only

use this one.

This behavior of the ants can be used to find the short-

est path in networks. Especially, the dynamic component of

this method allows a high adaptation to changes in mobile

ad-hoc network topology, since in these networks the ex-

istence of links are not guaranteed and link changes occur

very often.

1Pheromone is a kind of cumarin, which ants are able to smell.

2.2. Simple ant colony optimization meta-heuristic
algorithm

Let G = (V,E) be a connected graph with n = |V |
nodes. The simple ant colony optimization meta-heuristic

can be used to find the shortest path between a source node

vs and a destination node vd on the graph G. The path
length is given by the number of nodes on the path. Each

edge e(i, j) ∈ E of the graph connecting the nodes vi and

vj has a variable ϕi,j (artificial pheromone), which is mod-

ified by the ants when they visit the node. The pheromone

concentration, ϕi,j is an indication of the usage of this edge.

An ant located in node vi uses pheromone ϕi,j of node

vj ∈ Ni to compute the probability of node vj as next hop.

Ni is the set of one-step neighbors of node vi.

pi,j =

{ ϕi,j∑
j∈Ni

ϕi,j
if j ∈ Ni

0 if j /∈ Ni

The transition probabilities pi,j of a node vi fulfill the

constraint:

∑

j∈Ni

pi,j = 1, i ∈ [1, N]

During the route finding process, ants deposit

pheromone on the edges. In the simple ant colony

optimization meta-heuristic algorithm, the ants deposit a

constant amount ∆ϕ of pheromone. An ant changes the

amount of pheromone of the edge e(vi, vj) when moving
from node vi to node vj as follows:

ϕi,j := ϕi,j + ∆ϕ (1)

Like real pheromone the artificial pheromone concentra-

tion decreases with time to inhibit a fast convergence of

pheromone on the edges. In the simple ant colony opti-

mization meta-heuristic, this happens exponentially:

ϕi,j := (1 − q) · ϕi,j , q ∈ (0, 1] (2)

2.3. Why ant colony optimization meta-heuristic
suits to ad-hoc networks

The simple ant colony optimization meta-heuristic

shown in the previous section illustrates different reasons

why this kind of algorithms could perform well in mobile

multi-hop ad-hoc networks. We will discuss various rea-

sons by considering important properties of mobile ad-hoc

networks.

• Dynamic topology: This property is responsible for
the bad performance of several routing algorithms in

mobile multi-hop ad-hoc networks. The ant colony

optimization meta-heuristic is based on agent systems

and works with individual ants. This allows a high

adaptation to the current topology of the network.

2

some simulation results to show the ability of the approach.

Finally, a conclusion is given in section 5.

2. Basics and Background

The ant colony optimization meta-heuristic is a particu-

lar class of ant algorithms. Ant algorithms are multi-agent

systems, which consist of agents with the behavior of indi-

vidual ants, see [3, 1] for more information.

Figure 1. All ants take the shortest path after

an initial searching time.

2.1. Basic ant algorithm

The basic idea of the ant colony optimization meta

heuristic is taken from the food searching behavior of real

ants. When ants are on they way to search for food, they

start from their nest and walk toward the food. When an

ant reaches an intersection, it has to decide which branch to

take next. While walking, ants deposit pheromone1, which

marks the route taken. The concentration of pheromone on

a certain path is an indication of its usage. With time the

concentration of pheromone decreases due to diffusion ef-

fects. This property is important because it is integrating

dynamic into the path searching process.

Figure 1 shows a scenario with two routes from the nest

to the food place. At the intersection, the first ants randomly

select the next branch. Since the below route is shorter than

the upper one, the ants which take this path will reach the

food place first. On their way back to the nest, the ants again

have to select a path. After a short time the pheromone con-

centration on the shorter path will be higher than on the

longer path, because the ants using the shorter path will

increase the pheromone concentration faster. The shortest

path will thus be identified and eventually all ants will only

use this one.

This behavior of the ants can be used to find the short-

est path in networks. Especially, the dynamic component of

this method allows a high adaptation to changes in mobile

ad-hoc network topology, since in these networks the ex-

istence of links are not guaranteed and link changes occur

very often.

1Pheromone is a kind of cumarin, which ants are able to smell.

2.2. Simple ant colony optimization meta-heuristic
algorithm

Let G = (V,E) be a connected graph with n = |V |
nodes. The simple ant colony optimization meta-heuristic

can be used to find the shortest path between a source node

vs and a destination node vd on the graph G. The path
length is given by the number of nodes on the path. Each

edge e(i, j) ∈ E of the graph connecting the nodes vi and

vj has a variable ϕi,j (artificial pheromone), which is mod-

ified by the ants when they visit the node. The pheromone

concentration, ϕi,j is an indication of the usage of this edge.

An ant located in node vi uses pheromone ϕi,j of node

vj ∈ Ni to compute the probability of node vj as next hop.

Ni is the set of one-step neighbors of node vi.

pi,j =

{ ϕi,j∑
j∈Ni

ϕi,j
if j ∈ Ni

0 if j /∈ Ni

The transition probabilities pi,j of a node vi fulfill the

constraint:

∑

j∈Ni

pi,j = 1, i ∈ [1, N]

During the route finding process, ants deposit

pheromone on the edges. In the simple ant colony

optimization meta-heuristic algorithm, the ants deposit a

constant amount ∆ϕ of pheromone. An ant changes the

amount of pheromone of the edge e(vi, vj) when moving
from node vi to node vj as follows:

ϕi,j := ϕi,j + ∆ϕ (1)

Like real pheromone the artificial pheromone concentra-

tion decreases with time to inhibit a fast convergence of

pheromone on the edges. In the simple ant colony opti-

mization meta-heuristic, this happens exponentially:

ϕi,j := (1 − q) · ϕi,j , q ∈ (0, 1] (2)

2.3. Why ant colony optimization meta-heuristic
suits to ad-hoc networks

The simple ant colony optimization meta-heuristic

shown in the previous section illustrates different reasons

why this kind of algorithms could perform well in mobile

multi-hop ad-hoc networks. We will discuss various rea-

sons by considering important properties of mobile ad-hoc

networks.

• Dynamic topology: This property is responsible for
the bad performance of several routing algorithms in

mobile multi-hop ad-hoc networks. The ant colony

optimization meta-heuristic is based on agent systems

and works with individual ants. This allows a high

adaptation to the current topology of the network.

2

some simulation results to show the ability of the approach.

Finally, a conclusion is given in section 5.

2. Basics and Background

The ant colony optimization meta-heuristic is a particu-

lar class of ant algorithms. Ant algorithms are multi-agent

systems, which consist of agents with the behavior of indi-

vidual ants, see [3, 1] for more information.

Figure 1. All ants take the shortest path after

an initial searching time.

2.1. Basic ant algorithm

The basic idea of the ant colony optimization meta

heuristic is taken from the food searching behavior of real

ants. When ants are on they way to search for food, they

start from their nest and walk toward the food. When an

ant reaches an intersection, it has to decide which branch to

take next. While walking, ants deposit pheromone1, which

marks the route taken. The concentration of pheromone on

a certain path is an indication of its usage. With time the

concentration of pheromone decreases due to diffusion ef-

fects. This property is important because it is integrating

dynamic into the path searching process.

Figure 1 shows a scenario with two routes from the nest

to the food place. At the intersection, the first ants randomly

select the next branch. Since the below route is shorter than

the upper one, the ants which take this path will reach the

food place first. On their way back to the nest, the ants again

have to select a path. After a short time the pheromone con-

centration on the shorter path will be higher than on the

longer path, because the ants using the shorter path will

increase the pheromone concentration faster. The shortest

path will thus be identified and eventually all ants will only

use this one.

This behavior of the ants can be used to find the short-

est path in networks. Especially, the dynamic component of

this method allows a high adaptation to changes in mobile

ad-hoc network topology, since in these networks the ex-

istence of links are not guaranteed and link changes occur

very often.

1Pheromone is a kind of cumarin, which ants are able to smell.

2.2. Simple ant colony optimization meta-heuristic
algorithm

Let G = (V,E) be a connected graph with n = |V |
nodes. The simple ant colony optimization meta-heuristic

can be used to find the shortest path between a source node

vs and a destination node vd on the graph G. The path
length is given by the number of nodes on the path. Each

edge e(i, j) ∈ E of the graph connecting the nodes vi and

vj has a variable ϕi,j (artificial pheromone), which is mod-

ified by the ants when they visit the node. The pheromone

concentration, ϕi,j is an indication of the usage of this edge.

An ant located in node vi uses pheromone ϕi,j of node

vj ∈ Ni to compute the probability of node vj as next hop.

Ni is the set of one-step neighbors of node vi.

pi,j =

{ ϕi,j∑
j∈Ni

ϕi,j
if j ∈ Ni

0 if j /∈ Ni

The transition probabilities pi,j of a node vi fulfill the

constraint:

∑

j∈Ni

pi,j = 1, i ∈ [1, N]

During the route finding process, ants deposit

pheromone on the edges. In the simple ant colony

optimization meta-heuristic algorithm, the ants deposit a

constant amount ∆ϕ of pheromone. An ant changes the

amount of pheromone of the edge e(vi, vj) when moving
from node vi to node vj as follows:

ϕi,j := ϕi,j + ∆ϕ (1)

Like real pheromone the artificial pheromone concentra-

tion decreases with time to inhibit a fast convergence of

pheromone on the edges. In the simple ant colony opti-

mization meta-heuristic, this happens exponentially:

ϕi,j := (1 − q) · ϕi,j , q ∈ (0, 1] (2)

2.3. Why ant colony optimization meta-heuristic
suits to ad-hoc networks

The simple ant colony optimization meta-heuristic

shown in the previous section illustrates different reasons

why this kind of algorithms could perform well in mobile

multi-hop ad-hoc networks. We will discuss various rea-

sons by considering important properties of mobile ad-hoc

networks.

• Dynamic topology: This property is responsible for
the bad performance of several routing algorithms in

mobile multi-hop ad-hoc networks. The ant colony

optimization meta-heuristic is based on agent systems

and works with individual ants. This allows a high

adaptation to the current topology of the network.

2

Copyright: Anna Förster 2009

  Route discovery with forward/backward ants

  Data packets follow the pheromones in one of two
modes:

  Greedy:

  Probabilistic:

126 Kapitel 5. Routing in Ad-hoc-Netzen

5.4.3 Module von ARA

Der Ameisenroutingalgorithmus wurde um viele Module erweitert. Die Mo-
dule dienen einerseits zur Verbesserung der Nachahmung von realen Amei-
senkolonien, und andererseits zur Behebung von technischen Schwierigkei-
ten.

Routingentscheidung

Die grundlegende Methode der Weiterleitung von Datenpaketen wurde in Ab-
schnitt 5.4.2 diskutiert, jedoch wurde die konkrete Umsetzung nicht beschrie-
ben. Der Ameisenroutingalgorithmus kann in zwei unterschiedlichen Modi
Datenpakete weiterleiten, die sich bei der Wahl des nächsten Nachbarn für
ein Datenpaket unterscheiden:

• Routing nach Max-Pheromonwert
Hierbei wird versucht, Datenpakete auf einem optimalen Weg zum Ziel-
knoten zu transportieren. Dabei ist ein optimaler Weg durch die Länge
des Pfades in Anzahl der Hops, die auf dem Pfad liegen, gegeben. Des-
halb wählt der Knoten vi für die Weiterleitung eines Datenpakets an den
Zielknoten vd den Nachbarn v j mit dem höchsten Pheromonwert aus.

pi
d, j =

{
1 wenn ϕi

d, j = maxk∈Ni{ϕi
d,k}

0 sonst

• Probabilistisches Routing
Beim probabilistischen Routing werden die Datenpakete einer Daten-
verbindung über mehrere Pfade zum Zielknoten übertragen. Dadurch
ist es möglich, die Leistung des Routingalgorithmus zu verbessern. Beim
Weiterleiten wird ein Nachbarknoten mit höherem Pheromonwert mit
einer größeren Wahrscheinlichkeit gewählt. Es werden jedoch auch
Nachbarknoten gewählt, deren Pheromonwert kleiner ist. Der Knoten
vi wählt für die Weiterleitung eines Datenpakets an den Zielknoten vd
seinen Nachbarn v j mit der folgenden Wahrscheinlichkeit aus.

pi
d, j =

ϕi
d, j

∑k∈Ni ϕi
d,k

wenn j ∈ Ni

0 wenn j /∈ Ni

Die Version von ARA, die Routingentscheidungen nach dem maximalen Phe-
romonwert trifft, wird beim Leistungsvergleich in Abschnitt 5.5 als ARAmax

126 Kapitel 5. Routing in Ad-hoc-Netzen

5.4.3 Module von ARA

Der Ameisenroutingalgorithmus wurde um viele Module erweitert. Die Mo-
dule dienen einerseits zur Verbesserung der Nachahmung von realen Amei-
senkolonien, und andererseits zur Behebung von technischen Schwierigkei-
ten.

Routingentscheidung

Die grundlegende Methode der Weiterleitung von Datenpaketen wurde in Ab-
schnitt 5.4.2 diskutiert, jedoch wurde die konkrete Umsetzung nicht beschrie-
ben. Der Ameisenroutingalgorithmus kann in zwei unterschiedlichen Modi
Datenpakete weiterleiten, die sich bei der Wahl des nächsten Nachbarn für
ein Datenpaket unterscheiden:

• Routing nach Max-Pheromonwert
Hierbei wird versucht, Datenpakete auf einem optimalen Weg zum Ziel-
knoten zu transportieren. Dabei ist ein optimaler Weg durch die Länge
des Pfades in Anzahl der Hops, die auf dem Pfad liegen, gegeben. Des-
halb wählt der Knoten vi für die Weiterleitung eines Datenpakets an den
Zielknoten vd den Nachbarn v j mit dem höchsten Pheromonwert aus.

pi
d, j =

{
1 wenn ϕi

d, j = maxk∈Ni{ϕi
d,k}

0 sonst

• Probabilistisches Routing
Beim probabilistischen Routing werden die Datenpakete einer Daten-
verbindung über mehrere Pfade zum Zielknoten übertragen. Dadurch
ist es möglich, die Leistung des Routingalgorithmus zu verbessern. Beim
Weiterleiten wird ein Nachbarknoten mit höherem Pheromonwert mit
einer größeren Wahrscheinlichkeit gewählt. Es werden jedoch auch
Nachbarknoten gewählt, deren Pheromonwert kleiner ist. Der Knoten
vi wählt für die Weiterleitung eines Datenpakets an den Zielknoten vd
seinen Nachbarn v j mit der folgenden Wahrscheinlichkeit aus.

pi
d, j =

ϕi
d, j

∑k∈Ni ϕi
d,k

wenn j ∈ Ni

0 wenn j /∈ Ni

Die Version von ARA, die Routingentscheidungen nach dem maximalen Phe-
romonwert trifft, wird beim Leistungsvergleich in Abschnitt 5.5 als ARAmax

some simulation results to show the ability of the approach.

Finally, a conclusion is given in section 5.

2. Basics and Background

The ant colony optimization meta-heuristic is a particu-

lar class of ant algorithms. Ant algorithms are multi-agent

systems, which consist of agents with the behavior of indi-

vidual ants, see [3, 1] for more information.

Figure 1. All ants take the shortest path after

an initial searching time.

2.1. Basic ant algorithm

The basic idea of the ant colony optimization meta

heuristic is taken from the food searching behavior of real

ants. When ants are on they way to search for food, they

start from their nest and walk toward the food. When an

ant reaches an intersection, it has to decide which branch to

take next. While walking, ants deposit pheromone1, which

marks the route taken. The concentration of pheromone on

a certain path is an indication of its usage. With time the

concentration of pheromone decreases due to diffusion ef-

fects. This property is important because it is integrating

dynamic into the path searching process.

Figure 1 shows a scenario with two routes from the nest

to the food place. At the intersection, the first ants randomly

select the next branch. Since the below route is shorter than

the upper one, the ants which take this path will reach the

food place first. On their way back to the nest, the ants again

have to select a path. After a short time the pheromone con-

centration on the shorter path will be higher than on the

longer path, because the ants using the shorter path will

increase the pheromone concentration faster. The shortest

path will thus be identified and eventually all ants will only

use this one.

This behavior of the ants can be used to find the short-

est path in networks. Especially, the dynamic component of

this method allows a high adaptation to changes in mobile

ad-hoc network topology, since in these networks the ex-

istence of links are not guaranteed and link changes occur

very often.

1Pheromone is a kind of cumarin, which ants are able to smell.

2.2. Simple ant colony optimization meta-heuristic
algorithm

Let G = (V,E) be a connected graph with n = |V |
nodes. The simple ant colony optimization meta-heuristic

can be used to find the shortest path between a source node

vs and a destination node vd on the graph G. The path
length is given by the number of nodes on the path. Each

edge e(i, j) ∈ E of the graph connecting the nodes vi and

vj has a variable ϕi,j (artificial pheromone), which is mod-

ified by the ants when they visit the node. The pheromone

concentration, ϕi,j is an indication of the usage of this edge.

An ant located in node vi uses pheromone ϕi,j of node

vj ∈ Ni to compute the probability of node vj as next hop.

Ni is the set of one-step neighbors of node vi.

pi,j =

{ ϕi,j∑
j∈Ni

ϕi,j
if j ∈ Ni

0 if j /∈ Ni

The transition probabilities pi,j of a node vi fulfill the

constraint:

∑

j∈Ni

pi,j = 1, i ∈ [1, N]

During the route finding process, ants deposit

pheromone on the edges. In the simple ant colony

optimization meta-heuristic algorithm, the ants deposit a

constant amount ∆ϕ of pheromone. An ant changes the

amount of pheromone of the edge e(vi, vj) when moving
from node vi to node vj as follows:

ϕi,j := ϕi,j + ∆ϕ (1)

Like real pheromone the artificial pheromone concentra-

tion decreases with time to inhibit a fast convergence of

pheromone on the edges. In the simple ant colony opti-

mization meta-heuristic, this happens exponentially:

ϕi,j := (1 − q) · ϕi,j , q ∈ (0, 1] (2)

2.3. Why ant colony optimization meta-heuristic
suits to ad-hoc networks

The simple ant colony optimization meta-heuristic

shown in the previous section illustrates different reasons

why this kind of algorithms could perform well in mobile

multi-hop ad-hoc networks. We will discuss various rea-

sons by considering important properties of mobile ad-hoc

networks.

• Dynamic topology: This property is responsible for
the bad performance of several routing algorithms in

mobile multi-hop ad-hoc networks. The ant colony

optimization meta-heuristic is based on agent systems

and works with individual ants. This allows a high

adaptation to the current topology of the network.

2

some simulation results to show the ability of the approach.

Finally, a conclusion is given in section 5.

2. Basics and Background

The ant colony optimization meta-heuristic is a particu-

lar class of ant algorithms. Ant algorithms are multi-agent

systems, which consist of agents with the behavior of indi-

vidual ants, see [3, 1] for more information.

Figure 1. All ants take the shortest path after

an initial searching time.

2.1. Basic ant algorithm

The basic idea of the ant colony optimization meta

heuristic is taken from the food searching behavior of real

ants. When ants are on they way to search for food, they

start from their nest and walk toward the food. When an

ant reaches an intersection, it has to decide which branch to

take next. While walking, ants deposit pheromone1, which

marks the route taken. The concentration of pheromone on

a certain path is an indication of its usage. With time the

concentration of pheromone decreases due to diffusion ef-

fects. This property is important because it is integrating

dynamic into the path searching process.

Figure 1 shows a scenario with two routes from the nest

to the food place. At the intersection, the first ants randomly

select the next branch. Since the below route is shorter than

the upper one, the ants which take this path will reach the

food place first. On their way back to the nest, the ants again

have to select a path. After a short time the pheromone con-

centration on the shorter path will be higher than on the

longer path, because the ants using the shorter path will

increase the pheromone concentration faster. The shortest

path will thus be identified and eventually all ants will only

use this one.

This behavior of the ants can be used to find the short-

est path in networks. Especially, the dynamic component of

this method allows a high adaptation to changes in mobile

ad-hoc network topology, since in these networks the ex-

istence of links are not guaranteed and link changes occur

very often.

1Pheromone is a kind of cumarin, which ants are able to smell.

2.2. Simple ant colony optimization meta-heuristic
algorithm

Let G = (V,E) be a connected graph with n = |V |
nodes. The simple ant colony optimization meta-heuristic

can be used to find the shortest path between a source node

vs and a destination node vd on the graph G. The path
length is given by the number of nodes on the path. Each

edge e(i, j) ∈ E of the graph connecting the nodes vi and

vj has a variable ϕi,j (artificial pheromone), which is mod-

ified by the ants when they visit the node. The pheromone

concentration, ϕi,j is an indication of the usage of this edge.

An ant located in node vi uses pheromone ϕi,j of node

vj ∈ Ni to compute the probability of node vj as next hop.

Ni is the set of one-step neighbors of node vi.

pi,j =

{ ϕi,j∑
j∈Ni

ϕi,j
if j ∈ Ni

0 if j /∈ Ni

The transition probabilities pi,j of a node vi fulfill the

constraint:

∑

j∈Ni

pi,j = 1, i ∈ [1, N]

During the route finding process, ants deposit

pheromone on the edges. In the simple ant colony

optimization meta-heuristic algorithm, the ants deposit a

constant amount ∆ϕ of pheromone. An ant changes the

amount of pheromone of the edge e(vi, vj) when moving
from node vi to node vj as follows:

ϕi,j := ϕi,j + ∆ϕ (1)

Like real pheromone the artificial pheromone concentra-

tion decreases with time to inhibit a fast convergence of

pheromone on the edges. In the simple ant colony opti-

mization meta-heuristic, this happens exponentially:

ϕi,j := (1 − q) · ϕi,j , q ∈ (0, 1] (2)

2.3. Why ant colony optimization meta-heuristic
suits to ad-hoc networks

The simple ant colony optimization meta-heuristic

shown in the previous section illustrates different reasons

why this kind of algorithms could perform well in mobile

multi-hop ad-hoc networks. We will discuss various rea-

sons by considering important properties of mobile ad-hoc

networks.

• Dynamic topology: This property is responsible for
the bad performance of several routing algorithms in

mobile multi-hop ad-hoc networks. The ant colony

optimization meta-heuristic is based on agent systems

and works with individual ants. This allows a high

adaptation to the current topology of the network.

2

Copyright: Anna Förster 2009

10/14/09

22

126 Kapitel 5. Routing in Ad-hoc-Netzen

5.4.3 Module von ARA

Der Ameisenroutingalgorithmus wurde um viele Module erweitert. Die Mo-
dule dienen einerseits zur Verbesserung der Nachahmung von realen Amei-
senkolonien, und andererseits zur Behebung von technischen Schwierigkei-
ten.

Routingentscheidung

Die grundlegende Methode der Weiterleitung von Datenpaketen wurde in Ab-
schnitt 5.4.2 diskutiert, jedoch wurde die konkrete Umsetzung nicht beschrie-
ben. Der Ameisenroutingalgorithmus kann in zwei unterschiedlichen Modi
Datenpakete weiterleiten, die sich bei der Wahl des nächsten Nachbarn für
ein Datenpaket unterscheiden:

• Routing nach Max-Pheromonwert
Hierbei wird versucht, Datenpakete auf einem optimalen Weg zum Ziel-
knoten zu transportieren. Dabei ist ein optimaler Weg durch die Länge
des Pfades in Anzahl der Hops, die auf dem Pfad liegen, gegeben. Des-
halb wählt der Knoten vi für die Weiterleitung eines Datenpakets an den
Zielknoten vd den Nachbarn v j mit dem höchsten Pheromonwert aus.

pi
d, j =

{
1 wenn ϕi

d, j = maxk∈Ni{ϕi
d,k}

0 sonst

• Probabilistisches Routing
Beim probabilistischen Routing werden die Datenpakete einer Daten-
verbindung über mehrere Pfade zum Zielknoten übertragen. Dadurch
ist es möglich, die Leistung des Routingalgorithmus zu verbessern. Beim
Weiterleiten wird ein Nachbarknoten mit höherem Pheromonwert mit
einer größeren Wahrscheinlichkeit gewählt. Es werden jedoch auch
Nachbarknoten gewählt, deren Pheromonwert kleiner ist. Der Knoten
vi wählt für die Weiterleitung eines Datenpakets an den Zielknoten vd
seinen Nachbarn v j mit der folgenden Wahrscheinlichkeit aus.

pi
d, j =

ϕi
d, j

∑k∈Ni ϕi
d,k

wenn j ∈ Ni

0 wenn j /∈ Ni

Die Version von ARA, die Routingentscheidungen nach dem maximalen Phe-
romonwert trifft, wird beim Leistungsvergleich in Abschnitt 5.5 als ARAmax

126 Kapitel 5. Routing in Ad-hoc-Netzen

5.4.3 Module von ARA

Der Ameisenroutingalgorithmus wurde um viele Module erweitert. Die Mo-
dule dienen einerseits zur Verbesserung der Nachahmung von realen Amei-
senkolonien, und andererseits zur Behebung von technischen Schwierigkei-
ten.

Routingentscheidung

Die grundlegende Methode der Weiterleitung von Datenpaketen wurde in Ab-
schnitt 5.4.2 diskutiert, jedoch wurde die konkrete Umsetzung nicht beschrie-
ben. Der Ameisenroutingalgorithmus kann in zwei unterschiedlichen Modi
Datenpakete weiterleiten, die sich bei der Wahl des nächsten Nachbarn für
ein Datenpaket unterscheiden:

• Routing nach Max-Pheromonwert
Hierbei wird versucht, Datenpakete auf einem optimalen Weg zum Ziel-
knoten zu transportieren. Dabei ist ein optimaler Weg durch die Länge
des Pfades in Anzahl der Hops, die auf dem Pfad liegen, gegeben. Des-
halb wählt der Knoten vi für die Weiterleitung eines Datenpakets an den
Zielknoten vd den Nachbarn v j mit dem höchsten Pheromonwert aus.

pi
d, j =

{
1 wenn ϕi

d, j = maxk∈Ni{ϕi
d,k}

0 sonst

• Probabilistisches Routing
Beim probabilistischen Routing werden die Datenpakete einer Daten-
verbindung über mehrere Pfade zum Zielknoten übertragen. Dadurch
ist es möglich, die Leistung des Routingalgorithmus zu verbessern. Beim
Weiterleiten wird ein Nachbarknoten mit höherem Pheromonwert mit
einer größeren Wahrscheinlichkeit gewählt. Es werden jedoch auch
Nachbarknoten gewählt, deren Pheromonwert kleiner ist. Der Knoten
vi wählt für die Weiterleitung eines Datenpakets an den Zielknoten vd
seinen Nachbarn v j mit der folgenden Wahrscheinlichkeit aus.

pi
d, j =

ϕi
d, j

∑k∈Ni ϕi
d,k

wenn j ∈ Ni

0 wenn j /∈ Ni

Die Version von ARA, die Routingentscheidungen nach dem maximalen Phe-
romonwert trifft, wird beim Leistungsvergleich in Abschnitt 5.5 als ARAmax

some simulation results to show the ability of the approach.

Finally, a conclusion is given in section 5.

2. Basics and Background

The ant colony optimization meta-heuristic is a particu-

lar class of ant algorithms. Ant algorithms are multi-agent

systems, which consist of agents with the behavior of indi-

vidual ants, see [3, 1] for more information.

Figure 1. All ants take the shortest path after

an initial searching time.

2.1. Basic ant algorithm

The basic idea of the ant colony optimization meta

heuristic is taken from the food searching behavior of real

ants. When ants are on they way to search for food, they

start from their nest and walk toward the food. When an

ant reaches an intersection, it has to decide which branch to

take next. While walking, ants deposit pheromone1, which

marks the route taken. The concentration of pheromone on

a certain path is an indication of its usage. With time the

concentration of pheromone decreases due to diffusion ef-

fects. This property is important because it is integrating

dynamic into the path searching process.

Figure 1 shows a scenario with two routes from the nest

to the food place. At the intersection, the first ants randomly

select the next branch. Since the below route is shorter than

the upper one, the ants which take this path will reach the

food place first. On their way back to the nest, the ants again

have to select a path. After a short time the pheromone con-

centration on the shorter path will be higher than on the

longer path, because the ants using the shorter path will

increase the pheromone concentration faster. The shortest

path will thus be identified and eventually all ants will only

use this one.

This behavior of the ants can be used to find the short-

est path in networks. Especially, the dynamic component of

this method allows a high adaptation to changes in mobile

ad-hoc network topology, since in these networks the ex-

istence of links are not guaranteed and link changes occur

very often.

1Pheromone is a kind of cumarin, which ants are able to smell.

2.2. Simple ant colony optimization meta-heuristic
algorithm

Let G = (V,E) be a connected graph with n = |V |
nodes. The simple ant colony optimization meta-heuristic

can be used to find the shortest path between a source node

vs and a destination node vd on the graph G. The path
length is given by the number of nodes on the path. Each

edge e(i, j) ∈ E of the graph connecting the nodes vi and

vj has a variable ϕi,j (artificial pheromone), which is mod-

ified by the ants when they visit the node. The pheromone

concentration, ϕi,j is an indication of the usage of this edge.

An ant located in node vi uses pheromone ϕi,j of node

vj ∈ Ni to compute the probability of node vj as next hop.

Ni is the set of one-step neighbors of node vi.

pi,j =

{ ϕi,j∑
j∈Ni

ϕi,j
if j ∈ Ni

0 if j /∈ Ni

The transition probabilities pi,j of a node vi fulfill the

constraint:

∑

j∈Ni

pi,j = 1, i ∈ [1, N]

During the route finding process, ants deposit

pheromone on the edges. In the simple ant colony

optimization meta-heuristic algorithm, the ants deposit a

constant amount ∆ϕ of pheromone. An ant changes the

amount of pheromone of the edge e(vi, vj) when moving
from node vi to node vj as follows:

ϕi,j := ϕi,j + ∆ϕ (1)

Like real pheromone the artificial pheromone concentra-

tion decreases with time to inhibit a fast convergence of

pheromone on the edges. In the simple ant colony opti-

mization meta-heuristic, this happens exponentially:

ϕi,j := (1 − q) · ϕi,j , q ∈ (0, 1] (2)

2.3. Why ant colony optimization meta-heuristic
suits to ad-hoc networks

The simple ant colony optimization meta-heuristic

shown in the previous section illustrates different reasons

why this kind of algorithms could perform well in mobile

multi-hop ad-hoc networks. We will discuss various rea-

sons by considering important properties of mobile ad-hoc

networks.

• Dynamic topology: This property is responsible for
the bad performance of several routing algorithms in

mobile multi-hop ad-hoc networks. The ant colony

optimization meta-heuristic is based on agent systems

and works with individual ants. This allows a high

adaptation to the current topology of the network.

2

some simulation results to show the ability of the approach.

Finally, a conclusion is given in section 5.

2. Basics and Background

The ant colony optimization meta-heuristic is a particu-

lar class of ant algorithms. Ant algorithms are multi-agent

systems, which consist of agents with the behavior of indi-

vidual ants, see [3, 1] for more information.

Figure 1. All ants take the shortest path after

an initial searching time.

2.1. Basic ant algorithm

The basic idea of the ant colony optimization meta

heuristic is taken from the food searching behavior of real

ants. When ants are on they way to search for food, they

start from their nest and walk toward the food. When an

ant reaches an intersection, it has to decide which branch to

take next. While walking, ants deposit pheromone1, which

marks the route taken. The concentration of pheromone on

a certain path is an indication of its usage. With time the

concentration of pheromone decreases due to diffusion ef-

fects. This property is important because it is integrating

dynamic into the path searching process.

Figure 1 shows a scenario with two routes from the nest

to the food place. At the intersection, the first ants randomly

select the next branch. Since the below route is shorter than

the upper one, the ants which take this path will reach the

food place first. On their way back to the nest, the ants again

have to select a path. After a short time the pheromone con-

centration on the shorter path will be higher than on the

longer path, because the ants using the shorter path will

increase the pheromone concentration faster. The shortest

path will thus be identified and eventually all ants will only

use this one.

This behavior of the ants can be used to find the short-

est path in networks. Especially, the dynamic component of

this method allows a high adaptation to changes in mobile

ad-hoc network topology, since in these networks the ex-

istence of links are not guaranteed and link changes occur

very often.

1Pheromone is a kind of cumarin, which ants are able to smell.

2.2. Simple ant colony optimization meta-heuristic
algorithm

Let G = (V,E) be a connected graph with n = |V |
nodes. The simple ant colony optimization meta-heuristic

can be used to find the shortest path between a source node

vs and a destination node vd on the graph G. The path
length is given by the number of nodes on the path. Each

edge e(i, j) ∈ E of the graph connecting the nodes vi and

vj has a variable ϕi,j (artificial pheromone), which is mod-

ified by the ants when they visit the node. The pheromone

concentration, ϕi,j is an indication of the usage of this edge.

An ant located in node vi uses pheromone ϕi,j of node

vj ∈ Ni to compute the probability of node vj as next hop.

Ni is the set of one-step neighbors of node vi.

pi,j =

{ ϕi,j∑
j∈Ni

ϕi,j
if j ∈ Ni

0 if j /∈ Ni

The transition probabilities pi,j of a node vi fulfill the

constraint:

∑

j∈Ni

pi,j = 1, i ∈ [1, N]

During the route finding process, ants deposit

pheromone on the edges. In the simple ant colony

optimization meta-heuristic algorithm, the ants deposit a

constant amount ∆ϕ of pheromone. An ant changes the

amount of pheromone of the edge e(vi, vj) when moving
from node vi to node vj as follows:

ϕi,j := ϕi,j + ∆ϕ (1)

Like real pheromone the artificial pheromone concentra-

tion decreases with time to inhibit a fast convergence of

pheromone on the edges. In the simple ant colony opti-

mization meta-heuristic, this happens exponentially:

ϕi,j := (1 − q) · ϕi,j , q ∈ (0, 1] (2)

2.3. Why ant colony optimization meta-heuristic
suits to ad-hoc networks

The simple ant colony optimization meta-heuristic

shown in the previous section illustrates different reasons

why this kind of algorithms could perform well in mobile

multi-hop ad-hoc networks. We will discuss various rea-

sons by considering important properties of mobile ad-hoc

networks.

• Dynamic topology: This property is responsible for
the bad performance of several routing algorithms in

mobile multi-hop ad-hoc networks. The ant colony

optimization meta-heuristic is based on agent systems

and works with individual ants. This allows a high

adaptation to the current topology of the network.

2

  What are the consequences of greedy/probabilistic
routing to the development of pheromone levels on the
edges of the graph?

  How failure resistant are both versions?
  Is there any better option for taking routing decisions?
  Compare the pheromone levels against Q‐values

Leave pheromone when choosing an edge

Evaporate pheromone level

Greedy routing

Probabilistic routing

Copyright: Anna Förster 2009

  Separates route management from data routing
  Ants traverse the network continuously and update
pheromone levels (using pervious formulas)

  Data follows highest pheromone levels only
  Discussion:

 More communication overhead
  Better resilience against mobility and failures

G. Di Caro, F. Ducatelle, and L.M. Gambardella. AntHocNet: an adaptive nature‐inspired
algorithm for routing in mobile ad hoc networks. European Transactions on
Telecommunications, 16:443–455, 2005.

Copyright: Anna Förster 2009

10/14/09

23

Take away

Copyright: Anna Förster 2009

State of the art

Copyright: Anna Förster 2009

10/14/09

24

 High memory and processing requirements
  Inflexible to environmental changes
 Better suited for static, centralized problems

 Optimal scheduling of a one‐hop static network
 Optimal placement (with error guard) of sensors
 Optimal transmission radius (with error guard) for
each node

 Optimal clustering of the network
 …

Copyright: Anna Förster 2009

 Environmental model needed to compute
fitness of given network instance
 Simple, perfect communication model
 Simulation
 Real system (very costly when used with machine
learning!

 Error analysis of solution required
 Evaluate the effect of expected failures in the
network on the total behavior

Copyright: Anna Förster 2009

10/14/09

25

 Multihop routing (aggregation trees and their
usage):

O. Islam and S. Hussain. An intelligent multi‐hop routing for wireless sensor networks.
 In Proceedings of the IEEE/WIC/ACM international conference on Web Intelligence and
Intelligent Agent Technology (WI‐IAT), pages 239–242, Hong Kong, 2006.

  Optimal clustering:
S. Hussain, A. W. Matin, and O. Islam. Genetic algorithm for energy efficient clusters in

wireless sensor networks. In Proceedings of the 4th International Conference on
Information Technology (ITNG), pages 147– 154, Las Vegas, Nevada, USA, 2007.

  Optimal scheduling in a static, reliable environment:
Q. Tang, N. Tummala, S.K.S. Gupta, and L. Schwiebert. Communication scheduling to

minimize thermal effects of implanted biosensor networks in homogeneous tissue.
IEEE Transactions on Biomedical Engineering, 52(7):1285–1294, 2005.

Copyright: Anna Förster 2009

Take away

Copyright: Anna Förster 2009

10/14/09

26

Open discussion

Copyright: Anna Förster 2009

 Efficient on‐node implementation

 Real‐world deployments

Copyright: Anna Förster 2009

10/14/09

27

  Automatic parameter learning for
individual protocols

  Automatic parameter learning for
cross‐layer architectures

  Distributed implementations of PSO and neural
networks

  Efficient and robust routing protocol design with ant
colony optimization

  Applications to neighborhood management and
MAC protocols

Copyright: Anna Förster 2009

Optimizing Communications in Wireless

Sensor Networks with Machine Learning

Bibliography and Further Readings

Anna Förster
University of Lugano, Switzerland

anna.foerster@ieee.org

October 11th, 2009, Sliema, Malta

Some recent surveys give an overview of applications of machine learning
and computational intelligence for wireless sensor networks [1, 12, 18, 23, 29,
36, 44, 58].

1 Neural Networks

General information about neural networks can be found in [3, 46].

Energy Aware Routing and Clustering. Neural networks have been
widely applied in WSNs. SIR [4] is an energy-efficient routing protocol, which
assigns a neural network to each node in the network. The nodes use beacons to
find out the quality of links to their neighbors and the information is fed into the
NN to learn the quality of the links. Routing is performed based on a modified
Dijkstra shortest-path algorithm from a source to a single sink using the learnt
link quality. The protocol performs well compared to Directed Diffusion [57],
but results in a high beacon overhead. Additionally, the implementation of a
neural network on each of the nodes has high memory requirements and might
be hard on memory-restricted sensor hardware.

Scheduling and Medium Access Protocols. A centralized neural net-
work has been applied to solve the optimal TDMA scheduling for a WSN in [55].
However, a centralized computation of schedules does not take into account link
asymmetry, link and node failures, mobility etc. Additionally, it incurs high
communication overhead to dissipate the schedules to the nodes.

2 Decision trees and case-based reasoning

A formal description can be found in [40].

1

Energy Aware Routing and Clustering. An application to link quality
classification in WSNs is presented in [66]. The authors use simple rules to
classify links into good and bad, based on the RSSI level of received packets,
buffer sizes, etc. The computation is done centrally on the base station and the
data model is disseminated to all nodes in the network.

3 Reinforcement learning

Reinforcement learning (RL) [31, 62] is biologically inspired, where the learning
agent acquires its knowledge by actively exploring its environment.

Energy Aware Routing and Clustering. One of the fundamental and
earliest works in packet routing using machine learning is Q-Routing [8]. The
authors describe a very simple, Q-Learning based algorithm, which learns the
best paths considering the least latency to the destinations. Possible actions are
next hops at the nodes, and a Q-Value is assigned to each pair (sink , neighbor)
representing the time which a packet needs through this neighbor to reach the
sink. Simulations proved the algorithm to be efficient under high network loads
and to perform also well under changing network topologies. Although the ap-
proach was developed for wired, packet-switched networks, it inspired a lot of
works in the wireless ad hoc and WSN communities, because it is fully dis-
tributed. A recent implementation on Crossbow motes [11] has demonstrated
its practicality.

Many other routing protocols have been inspired from Q-Routing [2, 6, 25,
37, 43, 53, 67, 68]. The main difference between them is the used cost metric
for routing. Delivery time is used in [37, 59], maximum compression paths are
learnt in [6, 25, 67], and geographic-based routing is implemented in [2, 53].
A novel cost metric is used by [43], where the routing protocol learns to avoid
“important” nodes: nodes, which after failing might disconnect the network.
Neighboring nodes exchange information about their importance (computed lo-
cally at the nodes based on full topology information) and the best routes (with
least important nodes on them) are learnt. A more general cost function is
defined in [68], where any combination of number of hops, delay, and remaining
energy on the nodes can be applied.

Another difference between the above approaches is the used reinforcement
learning algorithm. The authors of [37] use dual reinforcement learning, which
gives rewards not only for previous actions, but also to next ones. Thus, learning
converges faster and the protocol shows better performance. Q-Learning is used
by [2, 53, 67, 68, 19]

An energy-aware multicast routing protocol based on Q-Learning called
FROMS is presented in [19, 21]. Its goal is to minimize the energy spent in
a network, while delivering packets to many sinks simultaneously. The idea
is based on an optimal broadcast Steiner tree, where a minimum number of
broadcasts are needed to deliver one packet from an independent source to all
sinks.

2

Team-partitioned, opaque-transition reinforcement learning (TPOT-RL) has
been developed for simulated robotic soccer [60] and applied to packet rout-
ing [59]. It allows a team of independent learning agents to collaboratively
learn a shared task, like soccer playing. It differs from traditional RL in its
value function, which is partitioned among the agents and each agent learns
only the part of it directly relevant to its localized actions. Also, the environ-
ment is opaque to the agents, which means that they have no information about
the next possible actions of their mates or their goodness.

A formal definition of RL in a distributed environment and a learning algo-
rithm is given in [17]. It presents a reinforcement learning algorithm, designed
especially for solving the point-to-point routing problem in MANETs. Collabo-
rative RL (CRL) is greatly based on Q-Learning, but uses also a decay function
(similar to pheromone evaporation in ACO, see further Section 4) to better meet
the properties of ad-hoc networks.

An additional contribution of [25] beside the Q-Learning routing protocol is
the automatic learning of the optimal values of the parameters of the algorithm
with a Bayesian exploration strategy. The paper presents an idea which can be
applied to all other RL-based algorithms, which need parameter pre-setting and
should be further explored and refined.

The setting of [65] is similar to those presented above: many source nodes
are sending data to a single base station. The algorithm takes into account
the aggregation ratio, the residual energy on the nodes, the hop cost to the
base station and the link reliability between the nodes. The algorithm runs
in learning episodes. The learning agents are again the nodes and Q-Values
are assigned to each possible next hop at each node. During each episode, the
current Q-Values are used to route a packet to the base station. At each hop,
the full hop information is appended to the packet (residual energy, rewards,
etc.). Rewards are generated at the base station. When the base station has
enough such packets (undefined how many), it calculates the Q-Values offline for
the nodes in the network and disseminates them via a network-wide broadcast.

Clique [20] solves the problem by avoiding all-over the cluster head selection
process. It assumes the nodes in the WSN have some a-priori clustering informa-
tion, like a simple geographic grid or room or floor information in a building. It
further assumes that the possibly multiple sinks in the network announce them-
selves through network-wide data requests. During the propagation of these
requests all network nodes are able to gather 1-hop neighborhood information
consisting of the remaining energy, hops to individual sinks and cluster member-
ship. When data becomes available for sending, nodes start routing it directly
to the sinks. At each intermediate node they take localized decisions whether
to route it further to some neighbor or to act as a cluster head and aggregate
data from several sources. Clique uses Q-Learning to select the best decision.

Although all of the above studies show promising results from applying var-
ious reinforcement learning algorithms to routing in WSNs, none of them has
reached the state of a mature communication protocol with implementation
and evaluation in a realistic simulation and real hardware environment. Their
evaluations are rather preliminary and concentrate on a few of their properties,

3

leaving out important questions about overhead and efficient implementation.

Scheduling and Medium Access Protocols. Actor Critic Algorithm [47]
is a early reinforcement learning algorithm, where the policy is detached from
the leant action values. In current RL algorithm like Q-Learning the policy is
fully dependent on the learnt Q-Values, which represent the current state of
the value function. This incurs search overhead when the best Q-Value needs
to be found. In actor critic algorithm a separate table (called the actor) can
be defined together with the value table (called the critic) to speed up action
selection. This algorithm has been applied for example to point to point com-
munication in sensor networks [42]. The goal of the algorithm is to maximize
throughput per total consumed energy in a sensor network, based on node-to-
node communication. Given its current buffer size and last channel transmission
gain, the node decides the best modulation level and transmit power to maxi-
mize the total throughput per consumed energy. For this, the authors use the
standard RL algorithm and test their algorithm on a two-node and multinode
scenarios. Unfortunately no comparison to other state-of-the-art protocols is
presented in order to evaluate the gain of the RL algorithm.

RL-MAC [38] applies reinforcement learning to adjust the sleeping schedule
of a MAC protocol in a WSN setting. The MAC protocol is very similar in its
idea to the other WSN MAC protocols such as S-MAC or T-MAC. It divides
the time into frames and the frames into slots, where each node is allowed to
transmit messages only during its own reserved slot. However, unlike other
protocols, it changes the duration of the frames and slots according to the
current traffic. At the beginning of its reserved slot, the node first transmits
some control information, including also a reward for the other nodes. The
reward function depends on the number of waiting messages on the nodes and on
the number of successfully transmitted messages during the reserved slot. The
paper reports higher data throughput and lower energy expenditure compared
to S-MAC.

COORD, a distributed reinforcement learning based solution to achieve best
coverage in a WSN is presented in [51]. The goal of the algorithm is to coopera-
tively find a combination of active and sleeping sensor nodes in a sensor network,
which is still able to perform full covered sensing of the desired phenomena. For
this the authors propose three similar approaches, all based on Q-Learning. The
possible actions are two: transitioning from sleeping to active mode and back.
The sensor network is divided into a rectangular grid and the goal is to cover
each grid vertex by some sensors, best by exactly one. A Q-Value is assigned to
each grid vertex, which represents the number of sensor nodes, currently cov-
ering this vertex. In each run of the algorithm, each node evaluates its current
Q-Value table with all grid vertices it covers and takes an action. After that,
all nodes evaluate again their Q tables and so on.

The other two solutions are very similar and the results they show are also
comparable. A comparison to some state-of-the-art approach is not provided
and thus the results cannot be properly evaluated. Also, a clear protocol im-
plementation is missing, leaving open many questions about coordination and

4

exchange of Q-Values and the states of the grid vertices. However, the approach
is fully distributed and can be run online if needed. Also, it shows a nice model-
ing work of converting a centralized problem into a distributed one and solving
it with RL.

4 Swarm Intelligence

A good introduction to swarm intelligence for wireless communications is pre-
sented in [32]. A more general overview of Swarm Intelligence can be found
in [33, 15, 16].

Energy Aware Routing and Clustering. Four variants of PSO are pro-
posed for energy aware clustering in [24]. The difference between them are the
PSO parameters - initial speed, acceleration, etc. Although PSO is a distributed
algorithm, here the algorithm is centralized and run on the base station with full
topology information about the network. The algorithm is based on a simple
idea that for a group of nodes that lie in a neighborhood, the node closest to the
base station becomes the clusterhead. The approach has some drawbacks: Clus-
tering depends solely on the physical distribution of nodes and is centralized.
Thus, in case of failures or any topology changes, the new information needs to
be gathered at the base station and clustering needs to be re-computed.

A novel clustering approach for WSNs called CRAWL is defined in [5] with
the use of soldier ants. Biological soldier ants that have the support of other sol-
dier ants are found to be more aggressive in nature. An ant is observed to exhibit
higher eagerness to fight when it is amidst strong ants. This fact inspires the col-
laborative clustering algorithm for wireless sensor network longevity (CRAWL)
that possesses good scalability and adaptability features. Here, each node has
an Eagerness value to serve as a clusterhead, which is computed based on its
own remaining battery and the remaining batteries of its neighbors. At reg-
ular intervals, each node computes its Eagerness value and broadcasts it over
the network. The node that has the highest Eagerness value decides to act as
a clusterhead, and the other nodes accept it. The clusterhead floods the new
clustering information, which helps other nodes to readjust their power levels
just enough for them to transmit to the clusterhead.

The method assures that only the nodes that have sufficient energy in their
reservoir, and have strong neighbors, opt to become clusterheads. The algorithm
has a significant communication overhead due to the fact that each node has to
flood its Eagerness value at regular intervals. In addition, the traffic of packets
might flow away from a sink node just because a node in that direction has
higher Eagerness. Thus, the algorithm is sub-optimal in terms of minimizing
energy expenditure of individual nodes, but optimal in terms of making effective
use of the energy available to the whole network.

AntNet [13] is an ACO application in communication networks used to find
near-optimal routes in a communication graph without global information. The
agents are divided into forward and backward ants. Forward ants are initial-

5

ized at the data source and sent to all known destinations at regular intervals.
They travel through the network graph by randomly choosing the next hop
and leave pheromones on their way. The more ants have chosen the same path
the higher the pheromone level of that path. During their travel, forward ants
gather routing information, indicating the arrival time at each node on their
way. At destination arrival, the forward ants are transformed into backward
ants and use the cashed route they have traveled to traverse the same route
again and to update the pheromone tables according to the gathered routing
information. Details of this computation can be found in [13, 14]. A decay func-
tion is implemented as evaporation of the pheromone levels, indicating which
routes are the most freshly used ones. The version of AntNet for MANETs is
called AntHocNet [14] and is developed by the some of the authors of AntNet.

AntNet and AntHocNet use both reactive path setup and proactive path
maintenance for single source - single sink. However, the approach requires ants
to be traveling independent from data packets and even to trace each path twice
(forward and backward), which causes a great overhead and is not well suited
for energy-restricted WSNs. Nevertheless, the method is fully distributed and is
the one best explored and described in the literature for using swarm intelligence
in wireless networks.

MANSI [54] (Multicast for Ad Hoc Networks with Swarm Intelligence) is
a multicast routing protocol for MANETs, based on swarm intelligence. The
protocol is similar to traditional multicast protocols, where a core node initiates
the building of the multicast tree through a forward Join Request Packet and
a backward Join Reply Packet. However, nodes different from the core send
ants into the network at regular intervals to explore the network for better
routes to the core, leaving routing information (pheromones) on their way. This
information is later used by following ants for opportunistically selecting their
next hops. The approach is similar to AntHocNet [14], however, optimization
is applied to multicast instead of unicast routing.

In [41], the authors propose an AntHocNet [14] based approach for routing
in a sensor network installed in a building. Its main disadvantage is that the
returning ants in the network create unnecessary overhead for a sensor network.

Ant-Based Control [50] is similar to AntNet in many aspects, but also has
some important differences. There is only one class of ants, started at regular
intervals at the data sources, traversing the network probabilistically and up-
dating the routing tables as they travel to the destinations. Once reaching their
destination, the ants are eliminated. The update of the routing tables is thus
not based on the trip times to the destination, but rather on the present lifetime
of the ant, calculated as the delay from its launching node to the present one.
Because of its relatively smaller communication overhead (only forward ants),
ABC is better suited for energy-restricted scenarios like WSN. However, it is
still costly to send ants at regular intervals and the advantages of using it should
be carefully evaluated.

UniformAnts [61] presents a simple ant-optimization based technique for
finding and maintaining routes in a MANET. Similarly to the original ABC
algorithm, it uses only forward ants, updating the probability-based routing

6

tables on the nodes as the ant travels towards the sink. Two different ant types
are used, the difference is how the next hop is selected - greedy or uniformly
between all options. The method achieves fairly good results and shares the
properties of ABC.

Mobile agents are often mistaken for a machine learning or swarm intelligence
approach. However, they refer to the usage of simple, small entities (packets),
which traverse the system (in our case the network) and deliver fresh infor-
mation to the system’s nodes. In the case of routing, for example, the agents
update routing information (paths or next hops) on the nodes [7, 9, 64]. Al-
though very efficient in some applications (like routing in less mobile scenarios),
they cannot be classified as a learning nor as a swarm intelligence algorithm.
They represent a good optimization to traditional routing approaches in mobile
scenarios. However, they also increase the communication cost for sending the
agents.

5 Genetic algorithms

General information about genetic algorithms can be found for example in [49].

Energy Aware Routing and Clustering. A GA based multi-hop rout-
ing technique named GA-Routing is proposed in [28] for maximizing network
longevity in terms of time to first node death. The proposed GA approach gen-
erates aggregation trees, which span all the sensor nodes. Although the best
aggregation tree is the most efficient path in the network, continuous use of this
path would lead to failure of a few nodes earlier than others. The goal of the
study in [28] is to find an aggregation tree, and the number of times a partic-
ular tree is used before the next tree comes in force. The spanning trees are
modeled as individuals. Simulation results show that GA gives better lifetime
than the single best tree (SBT) algorithm, and the same lifetime as the cluster
based maximum lifetime data aggregation algorithm [10] for small network sizes.
However, the algorithm’s overhead if not evaluated.

Another application of GA in energy efficient clustering is described in [27].
The proposed GA represents the sensor nodes as bits of chromosomes, cluster-
heads as 1 and ordinary nodes as 0. The number of bits in a chromosome is
equal to the number of nodes. The fitness of the chromosomes are computed
based on the distances between the nodes and the cluster heads, the distance
between the cluster heads and the sink and the energy spent to deliver packets
to the sink. The results show that the GA approach possesses better energy
efficiency than do hierarchical cluster based routing (HCR) and LEACH [45].
However, clustering overhead is not considered.

There are also some other similar ideas based on GAs, where a base station
computes the optimal routing, aggregation or clustering scheme for a network
based on the information about the topology, remaining energy on the nodes,
etc. [26, 39, 63]. Such algorithms are only feasible if the network is expected
to have a static topology, perfect communication, symmetric links and constant

7

energy. Under these restrictions, a centrally computed routing or aggregation
tree makes sense and is probably easier to implement. However, these properties
are in conflict with the nature of WSNs.

Scheduling and Medium Access Protocols. A model based on GA is
proposed for sleep scheduling of nodes in a randomly deployed large scale WSN
in [56]. Such networks deploy a large number of redundant nodes for better
coverage, and how to manage the combination of nodes for a prolonged network
operation is a major problem. The scheme proposed in the article divides the
network life into rounds. In each round, a set of nodes is kept active and the
rest of the nodes are put in sleep mode. It is ensured that the set of active
nodes has adequate coverage and connectivity. When some of the active nodes
die, blind spots appear. At this time, all nodes are woken up for a decision on
the next set of nodes to remain active in the next round. This is clearly a multi-
objective optimization problem. The first objective is to minimize the overall
energy consumption of the active set, and the second objective is to minimize
the number of active nodes. Again, gathering the topology information on a
single base station is critical and not feasible in a realistic scenario.

A similar scheduling problem called the active interval scheduling problem in
hierarchical WSNs for long-term periodical monitoring is introduced in [30]. In
this scenario, nodes are partitioned into clusters with local cluster heads, which
dictate active intervals to the nodes. Active intervals need to be coordinated
among clusters to avoid intra-cluster interference and minimized to minimize
energy expenditure. Again, the proposed algorithm is centralized and does not
take into account crucial WSN properties such as failures.

6 Heuristic Search

General information can be found in [34, 35].

Energy Aware Routing and Clustering. Real time heuristic search
methods are very well suited for wireless ad-hoc scenarios - the nodes in the
network can be modeled as the agent states, the packets as the agents and the
information available at the nodes about their one-hop neighbors can be used
for evaluating the search neighborhood. LRTA* is applied to routing in ad-hoc
networks in [48, 52] with good results. However, the need of a global heuristic
limits the applicability of the algorithm in distributed environments.

7 Implementation of Machine Learning for WSNs

Experience from implementing a Q-Learning based routing algorithm on real
hardware is presented in [22].

Standard libraries for implementing various ML techniques are Spider for

8

Matlab1, Pybrain for Python2, many others for neural networks and decision
trees.

References

[1] P. Arabshahi, A. Gray, I. Kassabalidis, El M. A. Sharkawi, R. J. Marks,
A. Das, and S. Narayanan. Adaptive routing in wireless communication
networks using swarm intelligence. In Proceedings of the 19th AIAA In-
ternational Communications Satellite Systems Conference (AIAA-ICSSC),
page 9pp., Toulouse, France, 2001.

[2] R. Arroyo-Valles, R. Alaiz-Rodrigues, A. Guerrero-Curieses, and J. Cid-
Suiero. Q-probabilistic routing in wireless sensor networks. In Proceedings
of the 3rd International Conference on Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP), pages 1–6, Melbourne, Australia,
2007.

[3] P.F. Baldi and K. Hornik. Learning in linear neural networks: A survey.
IEEE Transactions on Neural Networks, 6(4):837–858, 1995.

[4] J. Barbancho, C. León, J. Molina, and A. Barbancho. Giving neurons to
sensors: QoS management in wireless sensors networks. In C. Leon, editor,
Proceedings of the IEEE Conference on Emerging Technologies and Factory
Automation (ETFA), pages 594–597, Prague, Czech Republic, 2006.

[5] S. Bashyal and G.K. Venayagamoorthy. Collaborative routing algorithm for
wireless sensor network longevity. In Proceedings of the 3rd International
Conference on Intelligent Sensors, Sensor Networks and Information Pro-
cessing (ISSNIP), pages 515–520, Melbourne, Australia, 2007.

[6] P. Beyens, M. Peeters, K. Steenhaut, and A. Nowe. Routing with compres-
sion in wireless sensor networks: A Q-learning approach. In Proceedings of
the 5th European Workshop on Adaptive Agents and Multi-Agent Systems
(AAMAS), page 12pp., Paris, France, 2005.

[7] E. Bonabeau, F. Henaux, S. Guérin, D. Snyers, P. Kuntz, and G. Ther-
aulaz. Routing in telecommunications networks with “smart” ant-like
agents. In Proceedings of the 2nd International Workshop on Intelligent
Agents for Telecommunications Applications (IATA), pages 60–71, Paris,
France, 1998.

[8] J. A. Boyan and M. L. Littman. Packet routing in dynamically changing
networks: A reinforcement learning approach. Advances in Neural Infor-
mation Processing Systems, 6:671–678, 1994.

1http://www.kyb.tuebingen.mpg.de/bs/people/spider/
2http://www.pybrain.org/

9

[9] D. Camara and A. A. F. Loureiro. A novel routing algorithm for ad hoc
networks. In Proceedings of the 33rd Hawaii International Conference on
System Sciences (HICSS), page 8pp., Hawaii, USA, 2000.

[10] K. Dasgupta, K. Kalpakis, and P. Namjoshi. An efficient clustering-based
heuristic for data gathering and aggregation in sensor networks. In Pro-
ceedings of the IEEE Wireless Communications and Networking (WCNC),
volume 3, pages 1948–1953, New Orleans, USA, 2003.

[11] M.T. Dela Cruz, M. Whyte, Z. Yu, and T. Hanselmann. Q learning rout-
ing protocol. Display demonstration of real hardware implementation at
the International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), Melbourne, Australia, 2007.

[12] M. Di and E.M. Joo. A survey of machine learning in wireless sensor
networks. In Proceedings of the 6th International Conference on Informa-
tion, Communications and Signal Processing (ICICS), pages 1–5, Singa-
pore, 2007.

[13] G. Di Caro and M. Dorigo. AntNet: Distributed stigmergetic control
for communications networks. Journal of Artificial Intelligence Research,
9:317–365, 1998.

[14] G. Di Caro, F. Ducatelle, and L.M. Gambardella. AntHocNet: an adaptive
nature-inspired algorithm for routing in mobile ad hoc networks. European
Transactions on Telecommunications, 16:443–455, 2005.

[15] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis,
Politecnico di Milano, Italy, 1992.

[16] M. Dorigo and T. Stuetzle. Ant Colony Optimization. MIT Press, 2004.

[17] J. Dowling, E. Curran, R. Cunningham, and V. Cahill. Using feedback in
collaborative reinforcement learning to adaptively optimize MANET rout-
ing. IEEE Transactions on Systems, Man and Cybernetics, 35(3):360–372,
2005.

[18] A. Förster. Machine learning techniques applied to wireless ad-hoc net-
works: Guide and survey. In Proceedings of the 3rd International Confer-
ence on Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP), pages 365–370, Melbourne, Australia, 2007.

[19] A. Förster and A. L. Murphy. FROMS: Feedback routing for optimiz-
ing multiple sinks in WSN with reinforcement learning. In Proceedings
3rd International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), pages 371–376, Melbourne, Australia,
2007.

10

[20] A. Förster and A. L. Murphy. CLIQUE: Role-Free Clustering with Q-
Learning for Wireless Sensor Networks. In Proceedings of the 29th Interna-
tional Conference on Distributed Computing Systems (ICDCS), Montreal,
Canada, 2009.

[21] A. Förster and A. L. Murphy. FROMS: A Failure Tolerant and Mobil-
ity Enabled Multicast Routing Paradigm with Reinforcement Learning for
WSNs. Technical Report TR 2009/04, University of Lugano, June 2009.

[22] A. Förster, A. L. Murphy, J. Schiller, and K. Terfloth. An Efficient Imple-
mentation of Reinforcement Learning Based Routing on Real WSN Hard-
ware. Proceedings of the 4th IEEE International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMOB), 2008.

[23] Anna Förster. Teaching Networks How To Learn: Machine Learning for
Data Dissemination in Wireless Sensor Networks. PhD thesis, University
of Lugano, Switzerland, 2009.

[24] S.M. Guru, S.K. Halgamuge, and S. Fernando. Particle swarm optimisers
for cluster formation in wireless sensor networks. In Proceedings of the
2nd International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), pages 319–324, Melbourne, Australia,
2005.

[25] S. Hao and T. Wang. Sensor networks routing via bayesian exploration.
In Proceedings of the 31st IEEE Conference on Local Computer Networks
(LCN), pages 954–955, Tampa, FL, USA, 2006.

[26] S. Hussain and A. W. Matin. Hierarchical cluster-based routing in wireless
sensor networks. In Proceedings of the 5th International Conference on
Information Processing in Sensor Networks (IPSN), page 2pp., Nashville,
TN, USA, 2006.

[27] S. Hussain, A. W. Matin, and O. Islam. Genetic algorithm for energy
efficient clusters in wireless sensor networks. In Proceedings of the 4th
International Conference on Information Technology (ITNG), pages 147–
154, Las Vegas, Nevada, USA, 2007.

[28] O. Islam and S. Hussain. An intelligent multi-hop routing for wireless sen-
sor networks. In Proceedings of the IEEE/WIC/ACM international con-
ference on Web Intelligence and Intelligent Agent Technology (WI-IAT),
pages 239–242, Hong Kong, 2006.

[29] S. S. Iyengar, H.-C. Wu, N. Balakrishnan, and S. Y. Chang. Biologically
inspired cooperative routing for wireless mobile sensor networks. IEEE
Systems Journal, 1(1):29–37, 2007.

[30] M.H. Jin, W.Z. Liu, D.F. Hsu, and C.Y. Kao. Compact genetic algorithm
for perfor mance improvement in hierarchical sensor networks management.

11

In Proceedings of the 8th International Symposium on Parallel Architec-
tures, Algorithms and Networks (ISPAN), page 6pp., Las Vegas, Nevada,
USA, 2005.

[31] L.P. Kaelbling, M.L. Littman, and A.P. Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[32] I. Kassabalidis, M. A. ElSharkawi, R. J. Marks, P. Arabshahi, and A. A.
Gray. Swarm intelligence for routing in communication networks. In
Proceedings of the IEEE Global Telecommunications Conference (GLOBE-
COM), pages 3613–3617, San Antonio, TX, USA, 2001.

[33] J. Kennedy and R.C. Eberhart. Swarm Intelligence. Morgan Kaufmann,
2001.

[34] S. Koenig. Agent-centered search. AI Magazine, 22(4):109–131, 2001.

[35] R. E. Korf. Real-time heuristic search. Artificial Intelligence, 42(2-3):189–
211, 1990.

[36] S.B. Kulkarni, A. Förster, and G.K. Venayagamoorthy. A survey on ap-
plications of computational intelligence for wireless sensor networks. IEEE
Communications Surveys Tutorials, to be published, 2009.

[37] S. Kumar and R. Miikkulainen. Dual reinforcement Q-routing: An on-line
adaptive routing algorithm. In Proceedings of the Conference on Artificial
Neural Networks in Engineering (ANNIE), pages 231–238, St. Loius, MI,
USA, 1997.

[38] Z. Liu and I. Elahanany. RL-MAC: A reinforcement learning based MAC
protocol for wireless sensor networks. International Journal on Sensor
Networks, 1(3/4):117–124, 2006.

[39] A. W. Matin and S. Hussain. Intelligent hierarchical cluster-based routing.
In Proceedings of the International Workshop on Mobility and Scalability in
Wireless Sensor Networks (MSWSN), page 9pp., San Francisco, CA, USA,
2006.

[40] T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[41] R. Muraleedharan and L. A. Osadciw. A predictive sensor network using
ant system. In Proceedings of the SPIE Conference on Digital Wireless
Communications, volume 5440, pages 181–192, Orlando, FL, USA, 2004.

[42] C. Pandana and K. J. R. Liu. Near-optimal reinforcement learning frame-
work for energy-aware sensor communications. IEEE Journal on Selected
Areas in Communications, 23(4):788–797, 2005.

[43] C. Pandana and K.J.R. Liu. Robust connectivity-aware energy-efficient
routing for wireless sensor networks. IEEE Transactions on wireless com-
munications, 7(10):3904–3916, 2008.

12

[44] J.B. Predd, S.B. Kulkarni, and H.V. Poor. Distributed learning in wireless
sensor networks. IEEE Signal Processing Magazine, 23(4):56–69, 2006.

[45] W. Rabiner-Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-
efficient communication protocol for wireless microsensor networks. In Pro-
ceedings of the 33rd Hawaii International Conference on System Sciences
(HICSS), page 10pp., Hawaii, USA, 2000.

[46] R. Rojas. Neural Networks - A Systematic Introduction. Springer-Verlag,
1996.

[47] M.T. Rosenstein and A.G. Barto. Learning and Approximate Dynamic
Programming: Scaling Up to the Real World, chapter Supervised actor-
critic reinforcement learning, pages 359–380. John Wiley & Sons, 2004.

[48] M. Rossi, M. Zorzi, and R. R. Rao. Statistically assisted routing algorithms
(SARA) for hop count based forwarding in wireless sensor networks. Wire-
less Networks, 14(1):55–70, 2008.

[49] S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall International, 2003.

[50] R. Schoonderwoerd, O.E. Holland, J.L. Bruten, and L.J.M. Rothkrantz.
Ant-based load balancing in telecommunications networks. Adaptive Be-
havior, 2:169–207, 1996.

[51] M.W.M. Seah, C.K. Tham, K. Srinivasan, and A. Xin. Achieving cover-
age through distributed reinforcement learning in wireless sensor networks.
In Proceedings of the 3rd International Conference on Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP), 2007.

[52] Y. Shang, M. P. J. Fromherz, Y. Zhang, and L. S. Crawford. Constraint-
based routing for ad-hoc networks. In Proceedings of the International
Conference on Information Technology: Research and Education (ITRE),
pages 306–310, Newark, New Jersey, USA, 2003.

[53] D. Shaoqiang, P. Agrawal, and K. Sivalingam. Reinforcement learn-
ing based geographic routing protocol for UWB wireless sensor network.
In Proceedings of the IEEE Global Telecommunications Conference 2007
(GLOBECOM), pages 652–656, Washington, DC, USA, 2007.

[54] C.-C. Shen and C. Jaikaeo. Ad hoc multicast routing algorithm with swarm
intelligence. Mobile Networks and Applications, 10(1-2):47–59, 2005.

[55] Y. J. Shen and M. S. Wang. Broadcast scheduling in wireless sensor net-
works using fuzzy hopfield neural network. Expert Systems with Applica-
tions, 34(2):900–907, 2008.

13

[56] Zhang Shi, Zhang Zhe, Lu Qian-nan, and Chen Jian. Dynamic alliance
based on genetic algorithms in wireless sensor networks. In Proceedings
of the International Conference on Wireless Communications, Networking
and Mobile Computing (WiCOM), pages 1–4, Wuhan, China, 2006.

[57] F. Silva, J. Heidemann, R. Govindan, and D. Estrin. Frontiers in Dis-
tributed Sensor Networks, chapter Directed Diffusion, page 25pp. CRC
Press, Inc., 2003.

[58] K. M. Sim and W. H. Sun. Ant colony optimization for routing and load-
balancing: Survey and new directions. IEEE Transactions on Systems,
Man and Cybernetics, 33(5):560–572, 2003.

[59] P. Stone. TPOT- RL applied to network routing. In Proceedings of the
17th International Conference on Machine Learning (ICML), pages 935–
942, San Francisco, CA, 2000.

[60] P. Stone and M. Veloso. Team-partitioned, opaque-transition reinforcement
learning. In Proceedings of the 3rd annual Conference on Autonomous
Agents (AGENTS), pages 206–212, Seattle, WA, USA, 1999.

[61] D. Subramanian, P. Druschel, and J. Chen. Ants and reinforcement learn-
ing: A case study in routing in dynamic networks. In Proceedings of the
15th Joint Conference on Artificial Intelligence (IJCAI), pages 832–838,
Nagoya, Japan, 1997.

[62] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, March 1998.

[63] Q. Tang, N. Tummala, S.K.S. Gupta, and L. Schwiebert. Communication
scheduling to minimize thermal effects of implanted biosensor networks
in homogeneous tissue. IEEE Transactions on Biomedical Engineering,
52(7):1285–1294, 2005.

[64] C. Tham, S. Marwaha, and D. Srinivasan. Mobile agents based routing
protocol for mobile ad hoc networks. In Proceedings of the IEEE Global
Telecommunications Conference (GLOBECOM), volume 1, pages 163–167,
Taipei, Taiwan, 2002.

[65] P. Wang and T. Wang. Adaptive routing for sensor networks using re-
inforcement learning. In Proceedings of the 6th IEEE International Con-
ference on Computer and Information Technology (CIT), pages 219–224,
Bhubaneswar, India, 2006.

[66] Y. Wang, M. Martonosi, and L.-S. Peh. A supervised learning approach
for routing optimizations in wireless sensor networks. In Proceedings of the
2nd International Workshop on Multi-hop ad hoc networks: from theory to
reality (REALMAN), pages 79–86, Florence, Italy, 2006.

14

[67] B. Yu, P. Scerri, K. Sycara, Y. Xu, and M. Lewis. Scalable and reliable
data delivery in mobile ad hoc sensor networks. In Proceedings of the 4th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 1071–1078, Hakodate, Japan, 2006.

[68] Y. Zhang and M. P. J. Fromherz. A robust and efficient flooding-based
routing for wireless sensor networks. Journal of Interconnection Networks,
7(4):549–568, 2006.

15

