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The resistance network topology design (RNTD) problem

A resistance network consists of resistances linked to each other at the nodes of the network.
Some nodes are connected to earth, these are called fixed nodes; the remaining nodes are free
nodes.

By way of example, consider a network with 4 nodes, numbered from 1 to 4, with a resistor
of 6 Ohm between every pair of nodes. We take node 1 fixed and the external currents in
the nodes 2, 3 and 4 are 1, −1 and 1 respectively. Then the currents and potentials are as
indicated.
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The power consumption, or dissipation in the network is given by

4 ×

(
1

2

)2

× 6 = 6.

Given the external currents at the free nodes, our goal is to design a network with minimal
dissipation, assuming that the sum of conductance values is fixed. This is the RNTD problem.
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Other solutions for the sample problem

In the sample problem the sum of the conductance values is 6 × 1
6 = 1. The figure below

shows that there exist other networks on 4 nodes, with the same property, and with different

dissipations.
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rvw ∈ {6,∞} rvw ∈ {4,∞} rvw ∈ {4,∞} rvw ∈ {2,∞}

diss.= 6 diss.=8 diss.=4 diss.=4

As becomes clear later on, the last two networks have the smallest possible dissipation for the

given external currents.
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Balance equations provided by Kirchhoff’s first law

Let V denote the set of free nodes in the network. For each node v ∈ V , yv will denote the
potential of v (if v is a fixed node then its potential is zero).

To each resistor we associate a directed arc (v, w) connecting the corresponding end nodes
of the resistor. The set of all arcs is denoted as A. The structural matrix is the |V | × |A|

matrix B defined by

B(u, (v, w)) =







1, if u = v,

−1, if u = w,

0, otherwise.

u ∈ V, (v, w) ∈ A.

The external current is denoted as a vector f ∈ RV . For each v ∈ V , fv may be either
positive, negative or zero.

The currents on the arcs in the network are denoted as xvw, and x is the vector of all currents.
So x ∈ RA. Kirchhoff’s first law gives the balance equations in the free nodes, which are
simply

Bx = f.
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Equations provided by Ohm’s law

We denote by y the vector of the potentials yv in the free nodes. By Ohm’s law, on each arc

(v, w) ∈ A we must have xvwrvw = yv − yw, where rvw denote the resistance value of

the arc (v, w). In other words,

BTy = Rx,

where R = diag (r).

If rvw = 0 then we may identify the nodes v and w. So we assume, without loss of generality,

rvw > 0 for all arcs (v, w). Resistance values may be ∞ (if the corresponding nodes are

not connected). The conductance value of arc (v, w) is denoted as gvw. So gvw = 1/rvw,

for each arc. Defining G = R−1, the last equation is equivalent to

x = GBTy.

Substitution into Bx = f yields

BGBTy = f.

The matrix BGBT is called the conductance matrix of the network and denoted A(g). Note

that A(g) is a |V | × |V | matrix which depends linearly on the conductance values.
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Dissipation

To complete our model, we must express the dissipation of the network as a function of the

external current vector f and the conductance vector g. The dissipation is given by

Dissf(g) =
∑

{v,w}∈A

x2
vwRvw = xTRx.

Using

BTy = Rx

Bx = f

BGBT y = f,

this can be reduced as follows:

Dissf(g) = xTRx = xT
(

BTy
)

= (Bx)T y = fTy = yTBGBT y.

Since the (v, w)-entry of BTy equals yv − yw this implies

Dissf(g) =
(

BTy
)T

R−1BTy =
∑

{v,w}∈A

|yv − yw|
2

rvw
,

as it should.
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Illustration: Replacement resistance

When entering a unit current ev at a free node v, the replacement resistance rv at this node
(to earth) satisfies yv = rv ·1 = rv. So rv to is equal to the potential yv at the same node.

Due to BGBT y = f , it follows that y =
(

BGBT
)−1

f =
(

BGBT
)−1

ev, whence

rv = yv = eT
v

(

BGBT
)−1

ev = A(g)−1
vv .

In words:

the replacement resistance at any free node is equal to the corresponding element
on the diagonal of the inverse matrix of the conductance matrix A(g).

As an example we consider the network drawn below.

5 6 7 8 9

0 1 2 3 4

The nodes are numbered as indicated and the resistance values at the drawn arcs all are equal
to 1. The nodes 5 to 9 are taken fixed.
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Illustration: Replacement resistance (cont.)

5 6 7 8 9

0 1 2 3 4

The matrix B is as follows:

B =

(0,1) (1,2) (2,3) (3,4) (1,6) (2,7) (3,8) (4,9)

0

1

2

3

4















1

−1 1 1

−1 1 1

−1 1 1

−1 1















.

Only the nonzero entries of B are indicated.
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Illustration: Replacement resistance (cont.)

5 6 7 8 9

0 1 2 3 4

Since R is the unit matrix I, also G = I and hence the conductance matrix satisfies A(g) =

BGBT = BBT :

A(g) =











1 −1
−1 3 −1

−1 3 −1
−1 3 −1

−1 2











, A(g)−1 =
1

21











34 13 5 2 1
13 13 5 2 1
5 5 10 4 2
2 2 4 10 5
1 1 2 5 13











.

We conclude, e.g., that the replacement resistance at node 0, i.e., the resistance from node

0 to earth, equals 34
21. Similarly, at nodes 1 and 4 the replacement resistance is 13

21, and at

nodes 2 and 3 the replacement resistance is 10
21.
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Nonlinear model for the RNTD-problem

Given the nodes, the fixed nodes and the external current f , we want to find conductance val-

ues such that the dissipation is minimized. This amounts to solving the following minimization

problem:

min
g, y

{

fTy : A(g)y = f, g ≥ 0
}

.

If y and g are feasible, and λ > 0, then g/λ and λy are feasible as well. Hence, letting λ

decrease to zero the objective value approaches to zero. But then all nonzero conductance

values go to infinity. To prevent this, we put an upper bound on the sum of the conductances:

min
g, y







fT y : A(g)y = f, g ≥ 0,
∑

{v,w}∈A

gvw ≤ w







.

Since A(g) is linear in g, the equality constraints in the problem are nonlinear (not convex).

As a consequence, in this form the problem cannot be solved efficiently.

Optimization Group 11/31



To a linear model for the RNTD-problem

(NLO) min
g, y

{
fTy : A(g)y = f, eTg ≤ w, g ≥ 0

}
.

Define ∆ =
{
g : eTg ≤ w, g ≥ 0

}
, and assume that A(g) is invertible. By eliminating y we obtain a

problem in the variable vector g only:

min
g∈∆

fTA(g)−1f.

Yet we observe that
fTA(g)−1f = max

y



2fTy − yTA(g)y
︸ ︷︷ ︸

Eg,f(y)



 ,

and that each maximizer of the concave function Eg,f(y) satisfies A(g)y = f . Hence the problem (NLO)
can be restated as

min
g∈∆

max
y

Eg,f(y) ≡ max
y

min
g∈∆

Eg,f(y).

Taking y fixed, and using that yTA(g)y = yTBGBTy =
(
BTy

)T
GBTy, we obtain

min
g∈∆

Eg,f(y) = 2fTy − max
g∈∆

∑

vw∈A

gvw(BTy)2
vw ≥ 2fTy −

∑

vw∈A

gvw

∥
∥BTy

∥
∥
2

∞
= 2fTy − w

∥
∥BTy

∥
∥
2

∞
.

Since (BTy)vw = yv − yw, the last equality holds with equality if and only if

eTg = w and gvw > 0 ⇒ |yv − yw| =
∥
∥BTy

∥
∥
∞

= max
vw∈A

|yv − yw| .

We conclude that

a network g is optimal if and only if eTg = w and all resistors connect nodes for which the (absolute)
voltages are equal and maximal among all voltage values.
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Linear model for the RNTD-problem (cont.)

Thus we have reduced (NLO) to the following maximization problem in y:

max
y

(

2fTy − w
∥
∥BTy

∥
∥
2

∞

)

= max
y, λ

(

2λfT y − wλ2
∥
∥BTy

∥
∥
2

∞

)

= max
y

(
fTy

)2

w ‖BTy‖2
∞

.∗

The last expression is homogeneous in y. Since fTy ≥ 0, this problem can be solved by

fixing ‖BTy‖∞ and maximizing fTy, which is essentially a linear problem:

(LOP) max
y

{

fTy :
∥
∥
∥BTy

∥
∥
∥
∞

= 1
}

= max
y

{

fT y :
∥
∥
∥BTy

∥
∥
∥
∞

≤ 1
}

.

An optimal solution y∗ for this linear problem is, up to a scalar factor, µ say, optimal for

(NLO). Thus (NLO) reduces to a problem in µ whose optimal value is known:

min
g, µ

{

fT (µy∗) : A(g)(µy∗) = f, eTg = w, g ≥ 0
}

=

(

fTy∗
)2

w
.

From this we deduce that µ = fT y∗

w and that g can be found by solving the linear system

A(g)y∗ =
wf

fT y∗
, eTg = w, g ≥ 0, |y∗v − y∗w| <

∥
∥
∥BT y∗

∥
∥
∥
∞

⇒ gvw = 0.

∗Here we use that, when fixing y, the best value for λ satisfies 2fTy − 2wλ‖BTy‖2
∞ = 0.

Optimization Group 13/31



Application to the first example

The matrix B, the vector f and w are as follows.

B =

(2,1)(1,3)(4,1)(2,3)(2,4)(4,3)

2

3

4






1 0 0 1 1 0

0 −1 0 −1 0 −1

0 0 1 0 −1 1




 , f =






1

−1

1






The optimal solution y∗ of the linear problem is such that

y∗ =






1
0
1




 , BT y∗ =













1
0
1
1
0
1













, fT y∗ = 2.

Since w = 1, the minimal dissipation is 4 and this is achieved if g13 = g24 = 0 and







g21 0 g23 0

0 0 −g23 −g43

0 g41 0 g43
















1

1

1

1










=
1

2







1

−1

1







, g21 + g41 + g23 + g43 = 1.

One may easily deduce from this that the last two solutions on sheet 4 are indeed optimal.
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Instability with respect to small perturbations

Consider a network g which is optimal for the external (design) current f . We now demonstrate

that small perturbations in the design current f may have a disastrous effect on the dissipation.

Let u be an eigenvector of A(g) with eigenvalue λ. So A(g)u = λu. Without loss of

generality we assume ‖u‖ = ‖f‖ and uTf ≥ 0. Consider the situation that the external

current is perturbed as follows:

f(γ) = f + γu

for some γ ≥ 0. Then the potential vector y(γ) under the new current follows by solving

the equation A(g)y(γ) = f + γu, which gives

y(γ) = y +
γ

λ
u,

where y denotes the potential vector with respect to f . Here we used A(g)y = f and
A(g)u = λu. The new dissipation then satisfies

Dissf(γ)(g) = (f + γu)T
(

y +
γ

λ
u
)

= fTy + γuTy +
γ

λ
fTu +

γ2

λ
uTu ≥ Dissf(g) +

γ2

λ
‖f‖2 .

Here we used that Dissf(g) = fTy, fT u ≥ 0 (and hence also uTy ≥ 0) and uTu =

‖f‖2. We conclude that the effect on the dissipation of a small perturbation of the design

current may be large if the eigenvalue λ is small.
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Example of an instable network

By way of example we consider the 5-node grid shown below. Node 1 is fixed and the values

of the input currents in the remaining nodes are as shown.
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Example of an instable network (cont.)

The matrix B and the vector f are as follows.

B =

(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)

2

3

4

5








−1 0 0 0 1 1 1 0 0 0

0 −1 0 0 −1 0 0 1 1 0

0 0 −1 0 0 −1 0 −1 0 1

0 0 0 −1 0 0 −1 0 −1 −1








, f =








0.002

4.000

0.020

−0.050








.

An optimal solution is given by:

y =








4.022282
4.022000
4.021954

−0.000004








, g =






















0.000265
0.984046
0.003257

0
0
0

0.000232
0

0.010484
0.001715






















, x =






















−0.001066
−3.957833
−0.013100

0
0
0

0.000934
0

0.042167
0.006900






















.

The dissipation is 16.176484.
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Example of an instable network (cont.)

The matrix A(g) is given by

A(g) = B diag (g)BT =












0.000497 0 0 −0.000232

0 0.994530 0 −0.010484

0 0 0.004973 −0.001715

−0.000233 −0.010484 −0.001715 0.012432












.

Its eigenvalues are 0.000492, 0.004593, 0.012705, 0.994642. The smallest eigenvalue
is λ = 0.000492, and the corresponding eigenvector u with ‖u‖ = ‖f‖, fTu ≥ 0 is

u =








3.999373
0.000877
0.031823
0.083111








.

With γ = 0.1 we obtain

f2 = f(0.1) = f + 0.1u =








0.401937
4.000088
0.023182

−0.041689








.
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Example of an instable network (cont.)

λ = 0.000492, u =






3.999373
0.000877
0.031823
0.083111




 , f2 = f(0.1) = f + 0.1u =






0.401937
4.000088
0.023182

−0.041689




 .

From this we derive that

Dissf2(g) ≥ Dissf(g) +
γ2

λ
‖f‖2 ≥ Dissf(g) + 32499 γ2.

Hence, for γ = 0.1 the dissipation becomes about at least 341. Thus we conclude that a

perturbation of the design current of only 10% may lead to an increase of the dissipation by

as much as a factor 21.

It is clear from the above example that small eigenvalues of the matrix A(g) may give rise

to instability of the network: a small perturbation of the design current may cause a large

increase of the dissipation. We may conclude that for a stable network the eigenvalues of the

matrix A(g) should be bounded well away from zero.

In the sequel we will consider 1/λmin(A(g)) as a measure for the stability of the network.

For the above example this quantity is about 2031.
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Shor’s lemma

In the sequel we need the following lemma. In this lemma the notation M � 0 represents a
so-called matrix inequality; it means that M is s positive semidefinite matrix.

Lemma 1 A quadratic form xTAx + 2bTx + c is ≥ 0 for all x if and only if





A b

bT c




 � 0 or, equivalently






A −b

−bT c




 � 0.

Proof: The proof consists of a sequence of logically equivalent statements, as follows:

∀x : xTAx + 2bTx + c ≥ 0 ⇔

∀(t 6= 0, x) : t−2xTAx + 2t−1bTx + c ≥ 0 ⇔

∀(t 6= 0, x) : xTAx + 2tbTx + ct2 ≥ 0 ⇔

∀(t, x) : xTAx + 2tbTx + ct2 ≥ 0 ⇔

∀(t, x) :






x

t






T 




A b

bT c











x

t




 ≥ 0 ⇔






A b

bT c




 � 0.

•
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Variational Principle

Given a network g with external current f , and with the function Eg,f(y) defined as before,

we have:

Eg,f(y) = 2fT y − yTA(g)y.

Since g ≥ 0, the matrix A(g) is positive semidefinite, and hence Eg,f(y) is a concave

function. As a consequence, Eg,f(y) is maximal if and only y is such that

A(g) y = f.

Note that this is exactly the equation for equilibrium. Thus we obtain the following Variational

Principle:

The potential y of a network g under an external current f is a maximizer of the

quadratic form Eg,f(y).

Optimization Group 21/31



Variational Principle (cont.)

Note that in equilibrium, the (maximal) value of the function Eg,f(y) is given by fTy. In

other words,

Dissf(g) = max
y

Eg,f(y) = max
y

(

2fT y − yTA(g)y
)

.

Lemma 2 Dissf(g) ≤ τ holds if and only if

yTA(g)y − 2fTy + τ ≥ 0, ∀y.

Proof: Dissf(g) ≤ τ is equivalent to maxy∈Rm

[
2fTy − yTA(g)y

]
≤ τ. Clearly, this holds if and only if

2fTy − yTA(g)y ≤ τ for all y ∈ Rm, i.e., if and only if the quadratic form

yTA(g)y − 2fTy + τ

is nonnegative for all y ∈ Rn. •

Theorem 1 Dissf(g) ≤ τ holds if and only if





τ fT

f A(g)




 � 0.

Proof: This immediately follows from Lemma 2 and Shor’s Lemma. •
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Semidefinite model for the RNTD problem; multi-current case

The semidefinite representation of the dissipation enables us to formulate the RNTD problem

as a so-called semidefinite optimization problem:

min
τ, g

{

τ :

(

τ fT

f A(g)

)

� 0, eTg ≤ w, g ≥ 0

}

.

In the multi-current case we assume that the set F of current scenarios is a finite set:

F = {f1, . . . , fk} .

A big advantage of this model is that it can be easily adapted to obtain a RNTD that can

withstand the currents fi in F (not acting at the same time) in the best possible way.

min
τ, g

{

τ :

(

τ fT
j

fj A(g)

)

� 0, j = 1, . . . , k, eTg ≤ w, g ≥ 0

}

.

The linear matrix inequalities (LMI’s) express that the dissipation of the network determined

by g does not exceed τ , for each of the currents f1, . . . , fk.

A crucial question is if we can solve these models efficiently!
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General conic optimization problems

A general conic optimization problem is a problem in the conic form

min
x∈Rn

{

cTx : Ax − b ∈ K
}

,

where K is a closed convex pointed cone. Examples of such cones are

• the non-negative orthant Rm
+ (Linear Inequality constraints);

• the Lorentz (or second order, or ice-cream) cone Lm (Conic Quadratic constraints);

• the semidefinite cone Sm
+, i.e. the cone of positive semidefinite matrices of size m × m

(Linear Matrix Inequality (LMI) constraints);

• a direct product of such cones.

In all these cases conic optimization problems can be solved efficiently by an

interior-point method.
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Example of a multi-current network

We turn back to the instable network considered before. This network was designed for the
single current f1 = f . We saw that when it is subjected to the current f2 the dissipation
increases with a factor 21.

We can now optimize the network with respect to both currents by solving the multi-current
model for k = 2 and f1 and f2 as external currents. The resulting network has the same
topology as the original network but with a different vector g. The dissipation of the new
network with respect to f1 is 17.845762 (in stead of 16.176484). So the dissipation in
the new network, when loaded with f1 is about 10% higher than the minimal dissipation.
On the other hand, with respect to f2 the dissipation is now 19.582459, an increase of
only 21%. This is an enormous improvement. We gain a lot in terms of stability, at a small
cost in terms of optimality.

However, the new network is not yet stable. If we replace the design current by

f3 =








0.006981
4.000602
0.401186
0.071248








,

the perturbation is not more than 10%, and the dissipation becomes 52.942055, an increase
with more than a factor 3 with respect to the dissipation for f1.
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The robust RNTD problem

We finally consider the so-called robust RNTD problem, where we assume that the set of
external currents F is an ellipsoid:

F =
{

Qz : zTz ≤ 1
}

, Q ∈ M
m×p.

The matrix Q can be chosen such that the ellipsoid F contains all possible external currents
that might occur. Since the set F is infinite, we meet a difficulty not present in the case of
finite F , namely that the objective now is to minimize

DissF(g) := sup
f∈F

Dissf(g), (1)

which is the supremum of infinitely many semidefinite representable (SDR) functions. Fortu-
nately, it is easy to get a semidefinite representation for DissF(g). In the next theorem Ip

denotes the unit matrix of order p.

Theorem 2 One has Dissf(g) ≤ τ for each f ∈ F if and only if







τIp QT

Q A(g)








� 0.
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Proof of Theorem 2

Theorem 2 One has Dissf(g) ≤ τ for each f ∈ F if and only if





τIp QT

Q A(g)




 � 0.

Proof: With DissF(g) as defined before, we may write

DissF(g) ≤ τ ⇔ xTA(g)x − 2(Qz)Tx + τ ≥ 0, ∀x ∀(z : zTz ≤ 1)

⇔ xTA(g)x − 2(Qz)Tx + τ ≥ 0, ∀x ∀(z : zTz = 1)

⇔ xTA(g)x − 2(Q z
‖z‖

)Tx + τ ≥ 0, ∀x ∀z 6= 0

⇔ (‖z‖x)TA(g)(‖z‖ x) − 2(Qz)T(‖z‖ x) + τzTz ≥ 0, ∀x ∀z.

Replacing ‖z‖x by −y we obtain

DissF(g) ≤ τ ⇔ τzTz + 2zTQTy + yTA(g)y ≥ 0, ∀y ∀z

⇔




z

y





T 


τIp QT

Q A(g)








z

y



 ≥ 0, ∀y ∀z

⇔




τIp QT

Q A(g)



 � 0.

This proves the theorem. •
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The robust RNTD problem (cont.)

F =
{

f = Qz : zT z ≤ 1
}

, Q ∈ M
m×p.

Theorem 2 enables us to model the robust RNTD problem as follows:

min
τ, g

{

τ :

(

τIp QT

Q A(g)

)

� 0, eTg ≤ w, g ≥ 0

}

.

This model finds the network which is best able to withstand all the external currents in the

ellipsoidal set F . Note that it does not tell us how to choose the matrix Q. But it is clear

that we should choose Q in such a way that the ellipsoid F contains all currents that possibly

may occur. Below we will show the results for

Q = [f1 0.3 × ‖f1‖ × I4] =








0.002 1.200109 0 0 0

4.000 0 1.20010911 0 0

0.020 0 0 1.200109 0

−0.050 0 0 0 1.200109








,

and compare with them all previous results.

Optimization Group 28/31



Summary of results

1 g LO (1L) SDO (2L) SDO (3L) SDO (Rob.)

2 g12 0.000265 0.087292 0.042106 0.066618

3 g13 0.984046 0.899470 0.869742 0.797107

4 g14 0.003257 0.003818 0.062046 0.069907

5 g15 0 0 0.006339 0.057117

6 g23 0 0 0 0

7 g24 0 0 0.010774 0

8 g25 0.000232 0.003535 0.008993 0.000005

9 g34 0 0 0 0

10 g35 0.010484 0.004465 0 0.009200

11 g45 0.001715 0.001421 0 0.000046

12 Design dissipation 16.176484 19.582459 21.155707 21.738929

13 dissipation w.r.t f1 16.176484 17.845762 18.575612 19.849607

14 dissipation w.r.t f2 344.414583 19.582459 21.155707 22.277243

15 dissipation w.r.t f3 54.156705 52.942055 21.155707 22.358241

16 λ−1
min (A(g)) 2031 209 74 15
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Concluding remarks

It is now well-known that CO is a powerful tool for the mathematical modelling of inherently

nonlinear problems. One may check the references listed below to observe that, with the

exception of a few, all relevant papers appeared in the last 10 years. Indeed, the subject

thanks its existence to the development of efficient solution methods for CO problems in the

last decade. Especially the possibility of modelling robustness of a design in a computationally

tractable way opens the way to many new applications.

A. Ben-Tal and A. Nemirovski, illustrated the use of CO models for solving robust truss

topology design problems by giving some convincing examples. In the present paper we apply

the same approach to the inherently more simple case of the robust resistor network topology

design problem. It is shown that by using a semidefinite model the robustness of the design

can be significantly improved. It may be expected that the extension to more general networks,

with inductances and capacitators is more or less straightforward. This might be the subject

of future research.
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