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Introduction Motivations

Why an intrusion detection system?

Network security mainly means PREVENTION
Physical protection for hardware
Passwords, access tokens, etc. for authentication
Access control list for authorization
Cryptography for secrecy
Backups and redundancy for authenticity
. . . and so on

BUT . . .
. . . Absolute security cannot be guaranteed!
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Introduction Motivations

What is an Intrusion Detection System?

Prevention is suitable when
Internal users are trusted
Limited interaction with other networks

Need for a system which acts when prevention fails

Intrusion Detection System
An intrusion detection system (IDS) is a software/hardware tool
used to detect unauthorized accesses to a computer system or
a network
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Introduction Motivations

A taxonomy of the intruders

Intruders can be classified as
Masquerader: an individual who is not authorized to use
the computer and who penetrates a system’s access
control to exploit a legitimate user’s account
Misfeasor: a legitimate user who accesses data,
programs, or resources for which such access is not
authorized, or who is authorized for such access, but
misuses his/her privileges
Clandestine User: an individual who seizes supervisory
control of the system and uses the control to evade
auditing and access controls or to suppress audit collection
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Introduction Motivations

A taxonomy of the intrusions
Intrusions can be classified as

Eavesdropping and Packet Sniffing: passive interception of
network traffic

Snooping and Downloading

Tampering and Data Diddling: unauthorized changes to data
or records

Spoofing: impersonating other users

Jamming or Flooding: overwhelming a system’s resources

Injecting Malicious Code

Exploiting Design or Implementation Flaws (e.g., buffer
overflow)

Cracking Passwords and Keys
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Introduction IDS Taxonomy

IDS Taxonomy

Intrusion Detection Systems are classified on the basis of
several criteria:

1 Scope
Host IDS (HIDS)
Network IDS (NIDS)

2 Architecture
Centralized
Distributed

3 Analysis Techniques
Stateful
Stateless

4 Detection Techniques
Misuse Based IDS
Anomaly Based IDS

C. Callegari Anomaly Detection 11 / 169



Introduction IDS Taxonomy

Host based vs. Network based

Host based IDS
Aimed at detecting attacks related to a specific host
Architecture/Operating System dependent
Processing of high level information (e.g. system calls)
Effective in detecting insider misuse

Network based IDS
Aimed at detecting attacks towards hosts connected to a
LAN
Architecture/Operating System independent
Processing data at lower level of granularity (packets)
Effective in detecting attacks from the “outside”
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Introduction IDS Taxonomy

Centralized IDS vs. Distributed IDS

Centralized IDS
All the operations are performed by the same machine
More simple to realize
Only one point of failure

Distributed IDS
Composed of several components

Sensors which generate security events
Console to monitor events and alerts and control the sensors
Central Engine that records events and generate alarms

May need to deal with different data formats
Need of a secure communication protocol (IPFIX)
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Introduction IDS Taxonomy

Stateless IDS vs. Stateful IDS

Stateless IDS
Treats each event independently of the others
Simple system design
High processing speed

Stateful IDS
Maintains information about past events
The effect of a certain event depends on its position in the
events stream
More complex system design
More effective in detecting distributed attacks
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Introduction IDS Taxonomy

Misuse based IDS vs. Anomaly based IDS

Misuse based IDS
Identifies intrusion by looking for patterns of traffic or of
application data presumed to be malicious
Pattern of misuses are stored in a database
Effective in detecting only “known” attacks

Anomaly based IDS
Identifies intrusions by classifying activity as either
anomalous or normal
Needs a training phase to recognize normal activity
Able to detect “new” attacks
Generates more false alarms than a misuse based IDS
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Introduction IDS Taxonomy

Attacks State of the Art

C. Callegari Anomaly Detection 16 / 169



Introduction IDS Taxonomy

IDS State of the Art

Focus is on Network based IDSs (The only ones effective
in detecting Distributed Denial of Service - DDoS)
State of the art IDSs are Misuse Based

Most attacks are realized by means of software tools
available on the Internet
Most attacks are “well-known” attacks

BUT . . .
. . . The most dangerous attacks are those written

ad hoc by the intruder!
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Introduction IDS Taxonomy

The best choice?

Combined use of both
HIDS (for insider attacks) & NIDS (for outsider attacks)
Misuse IDS (low False Alarm rate) & Anomaly IDS (for
“new” attacks)
Stateless IDS (fast data process) & Stateful IDS (for
“complex” attacks)

Distributed IDS
Not a single point of failure
More effective in monitoring large networks
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Introduction IDS Taxonomy

The best choice?
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Introduction Some Useful Definitions

Definitions

False Positive (FP): the error of rejecting a null hypothesis
when it is actually true. In our case it implies the creation of
an alarm in correspondence of normal activities
False Negative (FN): the error of failing to reject a null
hypothesis when it is in fact not true. In our case it
corresponds to a missed detection
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Introduction Some Useful Definitions

ROC Curve

Plots Detection Rate vs. False Positive Rate
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Introduction Some Useful Definitions

ROC Curve

Results presented by the ROC are often considered incomplete
because

they do not take into account the cost of missed attacks
they do not take into account the cost of false alarms
they do not say if the system itself is resistant to attacks
. . .

Several researchers are working on more complete ways of
representing the results
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Introduction Evaluation Data-set

DARPA Evaluation Program

The 1998/1999 DARPA/MIT IDS evaluation program is the
most comprehensive evaluation performed to date
It provides a corpus of data for the development,
improvement, and evaluation of IDSs
Different kind of data are available:

Operating systems logs
Network traffic

Collected by an “inside” sniffer
Collected by an “outside” sniffer

The data model the network traffic measured between a
US Air Force base and the Internet
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Introduction Evaluation Data-set

The DARPA Network
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Introduction Evaluation Data-set

The DARPA Dataset

5 weeks data
Data from weeks 1 and 3 are attack free and can be used
to train the system
Data from week 2 contains labeled attacks and can be used
to realize the signatures database
Data from weeks 4 and 5 contains several attacks and can
be used for the detection phase

An Attack Truth list is provided
Attacks are categorized as

Denial of Service (DoS)
User to Root (U2R)
Remote to Local (R2L)
Data
Probe

177 instances of 59 different types of attacks
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Introduction Evaluation Data-set

Other Data-sets

The DARPA data-set has many drawbacks:
simulated environment
not up-to-date traffic
the methodology used for generating the traffic has been
shown to be inappropriate for simulating actual networks

Other Data-sets:
several publicly available traffic traces
e.g. CAIDA, Abilene (Internet2), GEANT, . . .
no ground truth is provided!
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Introduction Evaluation Data-set
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Introduction Evaluation Data-set

References

MIT, Lincoln laboratory, DARPA evaluation intrusion
detection, http://www.ll.mit.edu/IST/ideval/
R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das ,
The 1999 DARPA off-line intrusion detection
evaluation, Computer Networks 34, 2000
J. Haines, R. Lippmann, D. Fried, E. Tran, S. Boswell, and
M. Zissman , 1999 DARPA intrusion detection system
evaluation: Design and procedures, Tech. Rep. 1062,
MIT Lincoln Laboratory, 2001
J. McHugh, Testing Intrusion detection systems: a
critique of the 1998 and 1999 DARPA intrusion
detection, ACM Transactions on Information and System
Security 3, 2000
Christian Callegari, Stefano Giordano, Michele Pagano,
New Statistical Approaches for Anomaly Detection,
Security and Communication Networks, to appear

C. Callegari Anomaly Detection 28 / 169



IDES

Outline

1 Introduction

2 Intrusion Detection Expert System

3 Statistical Anomaly Detection

4 Clustering

5 Markovian Models

6 Entropy-based Methods

7 Sketch

8 Principal Component Analysis

9 Wavelet Analysis

C. Callegari Anomaly Detection 29 / 169



IDES

A bit of History

The history of IDSs can be split in three main blocks
1 First Generation IDSs (end of the 1970s)

The concept of IDS first appears in the 1970s and early
1980s (Anderson, Computer Security Monitoring and
Surveillance, Tech Rep 1980)
Focus on audit data of a single machine
Post processing of data

2 Second Generation IDSs (1987)
Intrusion Detection Expert System (Denning, An intrusion
Detection Model, IEEE Trans. on Soft. Eng., 1987)
Statistical analysis of data

3 Third Generation IDSs (to come)
Focus on the network
Real-time detection
Real-time reaction
Intrusion Prevention System
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IDES

IDES

Model’s components

Subjects: initiators of activity on a target system

Objects: resources managed by the system files, commands,
etc.

Audit Records: generated by the target system in response to
actions performed or attempted by subjects

Profiles: structures that characterize the behavior of subjects
with respect to objects in terms of statistical metrics and models
of observed activity

Anomaly Records: generated when abnormal behavior is
detected

Activity Rules: actions taken when some condition is satisfied
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IDES

Subjects and Objects

Subjects
Initiators of actions on the target system
It is typically a terminal user
They can be grouped into different categories

Users groups may overlap

Objects
Receptors of subjects’ actions
If a subject is a recipient of actions (e.g. electronic mail), then is
also considered to be a object
Additional structures may be imposed (e.g. records may be
grouped in database)

Objects granularity depends on the environment
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IDES

Audit Records

{Subject, Action, Object, Exception-Condition,
Resource-Usage, Time-stamp}

Action: operation performed by the subject on or with the
object
Exception-Condition: denotes which, if any, execution
condition is raised on the return
Resource-Usage: list of quantitative elements, where
each element gives the amount of some resource
Time-stamp: unique time/date stamp identifying when the
action took place
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IDES

Profiles

An activity profile characterizes the behavior of a given
subject (or set of subjects) with respect to a given object,
thereby serving as a signature or description of normal
activity for its respective subject and object
Observed behavior is characterized in terms of a statistical
metric and model
A metric is a random variable x representing a quantitative
measure accumulated over a period
Observations xi of x obtained from the audit records are
used together with a statistical model to determine whether
a new observation is abnormal
The statistical models make no assumptions about the
underlying distribution of x ; all knowledge about x is
obtained from the observations xi
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IDES

Metrics and Models

Metrics
Event counter

Interval timer

Resource measure

Statistical models
Operational model : abnormality is decided by comparison of xn with a fixed
threshold

Mean and standard deviation model : abnormality is decided by checking if xn
falls inside the confidence interval

Multivariate model : based on the correlations between two or more metrics

Markov process model : based on the transition probabilities

Time series model : takes into account order and inter-arrival time of the

observations
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IDES

Profile structure

{Variable-name, Action-pattern, Exception-pattern,
Resource-usage-pattern, Period, Variable-type, Threshold,

Subject-pattern, Object-pattern, Value}

Variable-name
Action-pattern: pattern that matches one or more actions in the
audit records (e.g. “login”)
Exception-pattern: pattern that matches on the
Exception-condition field of an audit record
Resource-usage-pattern: pattern that matches on the
Resource-usage field of an audit record
Period: time interval for measurements
Variable-type: name of abstract data type that defines a
particular type of metric and statistical model (e.g. event counter
with mean and standard deviation model)
Threshold
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IDES

Profile structure

{Variable-name, Action-pattern, Exception-pattern,
Resource-usage-pattern, Period, Variable-type, Threshold,

Subject-pattern, Object-pattern, Value}

Subject-pattern: pattern that matches on the Subject field
of an audit record
Object-pattern: pattern that matches on the Object field of
an audit record
Value: value of current observation and parameters used
by the statistical model to represent distribution of previous
values

There also is the possibility of defining profiles for classes
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IDES

Profile templates

When user accounts and objects can be created dynamically, a
mechanism is needed to generate activity profiles for new
subjects and objects

Manual create: the security officer explicitly creates all
profiles
Automatic explicit create: all profiles for a new user are
generated in response to a “create” record in the audit trail
First use: a profile is automatically generated when a
subject (new or old) first uses an object (new or old)
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IDES

Anomaly Records

{Event, Time-stamp, Profile}

Event: indicates the event giving rise to the abnormality
and is either “audit”, meaning the data in an audit record
was found abnormal, or “period”, meaning the data
accumulated over the current period was found abnormal
Time-stamp: either the Time-stamp in the audit trail or
interval stop time
Profile: activity profile with respect to which the
abnormality was detected
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IDES

Activity Rules

A condition that, when satisfied, causes the rule to be fired, and
a body, which specified the action to be taken

Audit-record rule: triggered by a match between a new audit
record and an activity profile, updates the profiles and checks for
anomalous behavior

Periodic-activity-update rule: triggered by the end of an
interval matching the period component of an activity profile,
updates the profiles and checks for anomalous behavior

Anomaly-record rule: triggered by the generation of an
anomaly record, brings the anomaly to the immediate attention
of the security officer

Periodic-anomaly-analysis rule: triggered by the end of an
interval, generates summary reports of the anomalies during the
current period
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IDES

References

D. Denning , An intrusion detection model, IEEE
Transactions Software Engineering, vol. SE-13, no.2, 1987

C. Callegari Anomaly Detection 41 / 169



Statistical Anomaly Detection

Outline

1 Introduction

2 Intrusion Detection Expert System

3 Statistical Anomaly Detection

4 Clustering

5 Markovian Models

6 Entropy-based Methods

7 Sketch

8 Principal Component Analysis

9 Wavelet Analysis

C. Callegari Anomaly Detection 42 / 169



Statistical Anomaly Detection

Statistical Approach: Traffic Descriptors

The goal is to identify some traffic parameters, which can be
used to describe the network traffic and that vary significantly
from the normal behavior to the anomalous one

Some examples
Packet length
Inter-arrival time
Flow size
Number of packets per flow
. . . and so on
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Statistical Anomaly Detection

Choice of the Traffic Descriptors

For each parameter we can consider
Mean Value
Variance and higher order moments
Distribution function
Quantiles
. . . and so on

The number of potential traffic descriptors is huge (some
papers identify up to 200 descriptors)

GOAL
To identify as few “attack invariant” descriptors as possible to

classify traffic with an acceptable error rate

C. Callegari Anomaly Detection 44 / 169



Cluster

Outline

1 Introduction

2 Intrusion Detection Expert System

3 Statistical Anomaly Detection

4 Clustering
Clustering
Outliers Detection

5 Markovian Models

6 Entropy-based Methods

7 Sketch

8 Principal Component Analysis

9 Wavelet Analysis
C. Callegari Anomaly Detection 45 / 169



Cluster Cluster

Clustering

Clustering is the assignment of a set of observations into
subsets (called clusters) so that observations in the same
cluster are similar in some sense
Clustering is a method of unsupervised learning
The clusters are computed on the basis of a distance
measure, which will determine how the similarity of two
elements is calculated
Common distances are:

Euclidean distance
Manhattan distance
Mahalanobis distance
. . .

C. Callegari Anomaly Detection 46 / 169



Cluster Cluster

K-Means Algorithm

The k-means algorithm assigns each point to the cluster whose
center (also called centroid) is the nearest

1 Choose the number of clusters, k
2 Randomly generate k clusters and determine the cluster

centers, or directly generate k random points as cluster
centers

3 Assign each point to the nearest cluster center
4 Recompute the new cluster centers
5 Repeat the two previous steps until some convergence

criterion is met (e.g., the assignment hasn’t changed)
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Cluster Cluster

K-Means Algorithm - An example

Consider k = 2, choose 2 points (centroids), build 2 clusters

!"#$%&'($)*+(,-./0
1.),/,(2&$)*34

567%,.8&-($)*34)
9,.'%&)&.)($8$)
9-/1-",))))))
46:"1/',%&;;&-($)&)
.$/'%&)8-'&)&.'$%.$)-)
<1,/'&)9,.'%&

Figure Reproduced From “Data Analysis Tools for DNA 
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Cluster Cluster

K-Means Algorithm - An example

Compute the new centroids
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Cluster Cluster

K-Means Algorithm - An example

Build the new clusters
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Cluster Cluster

K-Means Algorithm - An example

Repeat last 2 steps, until a assignments don’t change
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Cluster Outliers Detection

Outliers

In statistics, an outlier is an observation that is numerically
distant from the rest of the data
Detection based on the full dimensional distances between
the points as well as the densities of local neighborhoods
There exist at least two approaches

the anomaly detection model is trained using unlabeled
data that consist of both normal as well as attack traffic
the model is trained using only normal data and a profile of
normal activity is created
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Cluster Outliers Detection

Outliers Detection - Method 1

The idea behind the first approach is that anomalous or
attack data form a small percentage of the total data
Anomalies and attacks can be detected based on cluster
sizes

large clusters correspond to normal data
the rest of the data points, which are outliers, correspond to
attacks
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Cluster Outliers Detection
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Cluster Outliers Detection
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Markovian Models

State Transition Analysis

The approach was first proposed by Denning and
developed in the 1990s.
Mainly used in two distinct environment

HIDS: to model the sequence of system commands used
by a user
NIDS: to model the sequence of some specific fields of the
packet (e.g. the sequence of the flags values in a TCP
connection)

The most classical approach: Markov chains
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Markovian Models

Markov Chains and TCP

Idea: Model TCP connections by means of Markov chains
The IP addresses and the TCP port numbers are used to
identify a connection
State space is defined by the possible values of the TCP
flags
The value of the flags is used to identify the chain
transitions
A value Sp is associated to each packet according to the
rule

Sp = syn + 2 · ack + 4 · psh + 8 · rst + 16 · urg + 32 · fin

C. Callegari Anomaly Detection 58 / 169



Markovian Models First Order Homogeneous Markov Chains

Markov Chain and TCP - Training phase

Calculate the transition
probabilities

aij = P[qt+1 = j |qt = i] =

P[qt = i ,qt+1 = j]
P[qt = i]

Server side
3-way handshake
psh flag
closing

SSH Markov Chain
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Markovian Models First Order Homogeneous Markov Chains

Markov Chain and TCP - Training phase

Calculate the transition
probabilities

aij = P[qt+1 = j |qt = i] =

P[qt = i ,qt+1 = j]
P[qt = i]

Client side
3-way handshake
ack flag
closing

FTP Markov Chain
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Markovian Models First Order Homogeneous Markov Chains

Markov Chain and TCP - Training phase
Calculate the transition probabilities

aij = P[qt+1 = j |qt = i] =

P[qt = i , qt+1 = j]
P[qt = i]

SSH Markov Chain

3-Way
Handshake

Syn Flood
Attack
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Markovian Models First Order Homogeneous Markov Chains

Markov Chain and TCP - Detection phase

Given the observation (S1,S2, · · · ,ST )

The system has to decide between two hypothesis

H0 : normal behaviour
H1 : anomaly

(1)

A possible statistic is given by the logarithm of the
Likelihood Function

LogLF (t) =
T+R∑

t=R+1

Log(aSt St+1)

Or by its temporal “derivative”

Dw (t) =

∣∣∣∣LogLF (t)− 1
W

W∑
i=1

LogLF (t − i)
∣∣∣∣
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Markovian Models First Order Homogeneous Markov Chains

Markov Chain and TCP - Detection phase
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Markovian Models First Order Non Homogeneous Markov Chains

Non Homogeneous Markov Chain

First order homogeneous Markov chain
P(Ct = si0 |Ct−1 = si1 ,Ct−2 = si2 ,Ct−3 = si3 , · · · ) =

P(Ct = si0 |Ct−1 = si1) = P(C0 = si0 |C−1 = si1) =

P(si0 |si1)

First order non-homogeneous Markov chain
P(Ct = si0 |Ct−1 = si1 ,Ct−2 = si2 ,Ct−3 = si3 , · · · ) =

P(Ct = si0 |Ct−1 = si1) =

Pt(si0 |si1)

We build a distinct Markov Chain for each connection step
(first 10 steps)
The model should better characterizes the setup and the
release phases
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Markovian Models High Order Homogeneous Markov Chains

High order Markov Chain

First order homogeneous Markov chain
P(Ct = si0 |Ct−1 = si1 ,Ct−2 = si2 ,Ct−3 = si3 , · · · ) =

P(Ct = si0 |Ct−1 = si1) = P(C0 = si0 |C−1 = si1) =

P(si0 |si1)

l th order homogeneous Markov chain
P(Ct = si0 |Ct−1 = si1 ,Ct−2 = si2 ,Ct−3 = si3 , · · · ) =

P(Ct = si0 |Ct−1 = si1 ,Ct−2 = si2 , · · · ,Ct−l = sil ) =

P(C0 = si0 |C−1 = si1 ,C−2 = si2 , · · · ,C−l = sil ) =

P(si0 |si1 , si2 , · · · , sil )

Some connection phases have dependences, between
packets, of order bigger than 1
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Markovian Models High Order Homogeneous Markov Chains

Mixture Transition Distribution

We have an explosion of the number of the chain
parameters, which grows exponentially with the order
(K l(K − 1))
Parsimonious representation of the transition probabilities
Mixture Transition Distribution (MTD) model
(K (K − 1) + l − 1)

P(Ct = si0 |Ct−1 = si1 ,Ct−2 = si2 , · · · ,Ct−l = sil ) =
lX

j=1

λj r(si0 |sij )

where the quantities
R = {r(si |sj); i , j = 1, 2, · · · ,K} and Λ = {λj ; j = 1, 2, · · · , l}

satisfy the constraints

r(si |sj) ≥ 0; i , j = 1, 2, · · · ,K and
KX

si =1

r(si |sj) = 1 ∀j = 1, 2, · · · ,K

λj ≥ 0; j = 1, 2, · · · , l
lX

j=1

λj = 1
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Markovian Models High Order Homogeneous Markov Chains

State Space Reduction

We only consider the states observed during the training
phase
We add a rare state to take into account all the other
possible states
We fix the following quantities:

r(rare|si) = ε ∀i = 1,2, · · · ,K
with ε small (in our case ε = 10−6)

r(si |rare) = (1− ε)/(K − 1)

∀i = 1,2, · · · ,K − 1 (2)
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Markovian Models High Order Homogeneous Markov Chains

Parameters Estimation

We need to estimate the parameters of the Markov chain
(Maximum Likelihood Estimation - MLE)
According to the MTD model, the log-likelihood of a
sequence (c1, c2, · · · , cT ) of length T is:

LL(c1, c2, · · · , cT ) =
K∑

i0=1

· · ·
K∑

il=1

N(si0 , si1 , · · · , sil )·log
( l∑

j=1

λj r(si0 |sij )

)

where N(si0 , si1 , · · · , sil ) represents the number of times
the transition sil → sil−1 → · · · → si0 is observed
We have to maximize the right hand side of the equation,
with respect to R and Λ, taking into account the given
constraints
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Markovian Models High Order Homogeneous Markov Chains

Parameters Estimation

Estimation Steps
We apply an alternate maximization with respect to R and
to Λ

In the first step (estimation of Λ) we use the sequential
quadratic programming
The second step (estimation of R) is a linear inverse
problem with positivity constraints (LININPOS) that we
solve applying the Expectation Maximization (EM)
algorithm

Global Maximum
This process leads to a global maximum,

since LL is concave in R and Λ.

C. Callegari Anomaly Detection 69 / 169



Markovian Models High Order Homogeneous Markov Chains

Markov Chains - Detection Phase

Choose between a single hypothesis H0 (estimated
stochastic model), and the composite hypothesis H1 (all
the other possibilities)

H0 : {(c1, c2, · · · , cT ) ∼ computed model MC0}

H1 : {anomaly}

No optimal result is presented in the literature
The best solution is represented by the use of the
Generalized Likelihood Ratio (GLR) test:

X =

(
Maxv 6=uL(c1, c2, · · · , cT |Λv ,Rv )

L(c1, c2, · · · , cT |Λu,Ru)

)1
T H0

≶
H1

ξ
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Markovian Models High Order Homogeneous Markov Chains

Markov Chains - Detection Phase

Equivalent to decide on the basis of the Kullback-Leibler
divergence between the model associated to H0 (MC0) and the
one computed for the observed sequence (MCs)

The Kullback-Leibler divergence, for first order Markov chains, is
defined as:

KL (MC0,MCs) =
∑

i

∑
j

π0(si )P0(sj |si ) log
P0(sj |si )

Ps(sj |si )

where π0(si ) is the stationary distribution of MC0 and Pk (sj |si ) is
the (single step) transition probability from state Ct−1 = si to
state Ct = sj

Extension to Markovian models of order l
The state of the chain Ct has to be considered as a point in a finite
l-dimensional lattice:

Ct = (Ct ,Ct−1, . . .,Ct−l+1)
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Markovian Models High Order Homogeneous Markov Chains

Non-Homogeneous Markov Chain
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High Order Markov Chain
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Entropy Entropy

Theoretical Background

Entropy
The entropy H of a discrete random variable X is a measure of
the amount of uncertainty associated with the value of X
Referring to an alphabet composed of n distinct symbols,
respectively associated to a probability pi , then

H = −
n∑

i=1

pi · log2pi bit/symbol

The starting point
The entropy represents a lower bound to the compression rate
that we can obtain: the more redundant the data are and the
better we can compress them.
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Entropy Compression Algorithms

Compression Algorithms

Dictionary based algorithms: based on the use of a
dictionary, which can be static or dynamic, and they code
each symbol or group of symbols with an element of the
dictionary

Lempel-Ziv-Welch (LZW)
Model based algorithms: each symbol or group of
symbols is encoded with a variable length code, according
to some probability distribution.

Huffman Coding (HC)
Dynamic Markov Compression (DMC)
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Entropy Compression Algorithms

Lempel-Ziv-Welch

Created by Abraham Lempel, Jacob Ziv, and Terry Welch.
It was published by Welch in 1984 as an improved
implementation of the LZ78 algorithm, published by
Lempel and Ziv in 1978
Universal adaptative1 lossless data compression algorithm
Builds a translation table (also called dictionary) from the
text being compressed
The string translation table maps the message strings to
fixed-length codes

1The coding scheme used for the k th character of a message is based on
the characteristics of the preceding k − 1 characters in the message
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Entropy Compression Algorithms

Huffman Coding

Developed by Huffman (1952)
Based on the use of a variable-length code table for
encoding each source symbol
The variable-length code table is derived from a binary tree
built from the estimated probability of occurrence for each
possible value of the source symbols
Prefix-free code2 that expresses the most common
characters using shorter strings of bits than are used for
less common source symbols

2The bit string representing some particular symbol is never a prefix of the
bit string representing any other symbol
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Entropy Compression Algorithms

Dynamic Markov Compression

Developed by Gordon Cormack and Nigel Horspool (1987)
Adaptative lossless data compression algorithm
Based on the modelization of the binary source to be
encoded by means of a Markov chain, which describes the
transition probabilities between the symbol “0” and the
symbol “1”
The built model is used to predict the future bit of a
message. The predicted bit is then coded using arithmetic
coding
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Entropy Compression Algorithms

System Design

Input
The system input is given by raw traffic traces in libpcap
format
The 5-tuple is used to identify a connection, while the value
of the TCP flags is used to build the “profile”
A value si is associated to each packet:

si = SYN +2 ·ACK +4 ·PSH +8 ·RST +16 ·URG +32 ·FIN

thus each “mono-directional” connection is represented by
a sequence of symbols si , which are integers in
{0,1, · · · ,63}

C. Callegari Anomaly Detection 82 / 169



Entropy Compression Algorithms

System Design

Training Phase

Choose one of the three previously described algorithms
(Huffman, DMC, or LZW)
The compression algorithms have been modified so as that
the “learning phase” is stopped after the training phase:

Huffman case: the occurency frequency of each symbol is
estimated only on the training dataset
DMC case: the estimation of the Markov chain is only
updated during the training phase
LZW case: the construction of the dictionary is stopped
after the training phase

Detection performed with a compression scheme that is
“optimal” for the “normal” traffic used for building the
considered “profile” and suboptimal for “anomalous” traffic
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Entropy Compression Algorithms

System Design

Detection Phase
Append each distinct “observed” connection b, to the
training sequence A
Compute the “compression rate per symbol”:

X =
dim([A|b]∗)− dim([A]∗)

Length(b)

where [X ]∗ represents the compressed version of X
Choose between a single hypothesis H0 (normal traffic),
and the composite hypothesis H1 (anomaly)

X
H0
≶
H1

ξ
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Entropy Compression Algorithms

Results - System Comparison
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Entropy Compression Algorithms

Results - On-line System
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Sketch Count-Min sketch

Data Stream Mining

Data Stream mining
The data stream mining is a set of techniques which permits to
analyze a data flow, almost in real-time, without storing all the
data

Can be used to analyze, for example, the network traffic
The aim can be the calculation of histograms, the
individuation of the most common features, etc.
Two constraints

1 Almost real-time
2 Without storing all the data

C. Callegari Anomaly Detection 90 / 169



Sketch Count-Min sketch

The Count-Min Sketch Algorithm

Proposed by Cormode and Muthukrishran, 2004
Each element of the data flow is identified by

id it ∈ {1,2, . . . ,N}, with N big
label ct ∈ R

The data flow is the sequence (it , ct )t∈N
An example

The data flow is the network traffic
it is the source IP address of packet t
ct is the length of packet t
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Sketch Count-Min sketch

The Count-Min Sketch Algorithm

At each instant τ ∈ N and for each id i , we define a count
ai(τ)

ai(τ)
def=

τ∑
t=0

ctδi,it

with δi,it = 1 if i = it and δi,it = 0 otherwise

In our example ai(τ) is the total number of bytes sent from
i up to the instant τ
First step of the algorithm: estimate âi(τ)
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Sketch Count-Min sketch

The Count-Min Sketch Algorithm

Fix the precision ε and the failure probability δ
Let’s w = de

ε e and d = dln 1
δ e

Let’s take d independent random hash functions
Let’s allocate a table Countdxw initialized to zero
For each instant t , let’s update the table according to:
for each
j ∈ {1,2, . . . ,d} Count [j ,hj(it )] = Count [j ,hj(it )] + ct
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Sketch Count-Min sketch

The Count-Min Sketch Algorithm

At the instant τ and for each id i ∈ {1,2, . . . ,N} we have an
estimation âi(τ) of the count ai(τ)

âi(τ) = min
j

Count [j ,hj(it )](τ)
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Sketch Count-Min sketch

The Count-Min Sketch Algorithm

Main properties
The estimator âi(τ) ≥ ai(τ)

P{âi(τ) ≤ ai(τ) + ε||−→a (τ)||1} ≥ 1− δ
−→a (τ)

def= (a1(τ),a2(τ), . . . ,aN(τ))

||−→a (τ)||1
def= |a1(τ)|+ |a2(τ)|+ . . .+ |aN(τ)|
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Sketch Count-Min sketch

The Count-Min Sketch Algorithm

Complexity in time
Number of operations for updating the Count table is
O(ln(1

δ ))

Number of operations for calculating âi is O(ln(1
δ ))

Complexity in space
Number of words for storing the hash functions and the
Count table is O(1

ε ln(1
δ ))
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Sketch Heavy Hitters Detection

Finding Heavy Hitters

Aim: find those items whose frequencies exceed a
threshold φ during the observation window
These items are called Heavy Hitters
Possible application: finding the IP addresses, whose
contribution to the network traffic exceeds the threshold
An anomaly can be detected as a variation of the heavy
hitters distribution

At a given instant τ and for a given threshold φ we define heavy
hitters all the i , such that ai(τ) ≥ φ ‖ ~a(τ) ‖1
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Sketch Heavy Hitters Detection

Application of the Count-Min sketch algorithm

Initialization, at the instant t = 0

Calculate ‖ ~a(0) ‖1= c0

Update Count
Add i0 and his estimated count âi0(0) to the list L of the
potential heavy hitters
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Sketch Heavy Hitters Detection

Application of the Count-Min sketch algorithm

Iteration, at the instant t = t

Calculate ‖ ~a(t) ‖1=‖ ~a(t − 1) ‖1 +ct

Update Count
Calculate the estimated count âit (t)
If âit (t) ≥ φ ‖ ~a(t) ‖1 then

If it does not belongs to L: add it and his estimated count
âit (t) to L
Else replace the count corresponding to it

Eliminate from the list every i , whose count is less than
φ ‖ ~a(t) ‖1

After all the iterations, L contains all the heavy hitters
The real count of all the elements of L is greater than
(φ− ε) ‖ ~a(t) ‖1, with probability at least 1− δ
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Sketch Heavy Hitters Detection

Finding Hierarchical Heavy Hitters

Extension of the method, which takes into account the
hierarchical structure of the IP addresses
The Hierarchical Heavy Hitters (HHH) are defined
recursively from the bottom to the top of the hierarchy
At the lowest level (level 0), the HHH are the Heavy Hitters
(i.e all those source addresses whose counts exceed the
threshold)
At level l > 0 an IP prefix is a HHH if its count minus the
count of its descendant HHHs is greater that or equal to
the threshold
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Sketch Heavy Hitters Detection

Finding Hierarchical Heavy Hitters
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PCA PCA

Principal Component Analysis

PCA is a coordinate transformation method that maps the
measured data onto a new set of axes

These axes are called Principal Components
Each principal component points in the direction of
maximum variation or energy remaining in the data
The principal axes are ordered by the amount of energy in
the data they capture
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PCA PCA

Geometric illustration
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PCA PCA

Data

A week of network-wide traffic measurements from Internet2:
Internet2 samples 1 out of every 100 packets for inclusion
in the flow statistics
In Internet2 packets are aggregated into five-minute
time-bins
Abilene anonymizes the last eleven bits of the IP address
stored in the flow records

Routing Info.

In order to aggregate the collected IP flows into OD flows, we
also need to parse the routing data. Internet2 deploys Zebra
BGP monitors that record all BGP messages they receive.
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PCA PCA

Data

Measurements Matrix,Xt×p:

Let p denote the number of traffic aggregate

Let t denote the number of time-bin

Column i denotes the time-series of the i-th traffic aggregate,
with zero mean

Row j represents an instance of all the traffic aggregate at j-th
time-bin

x , transposed row of X

X =


x11 x12 · · · x1p
x21 x22 · · · x2p
...

...
. . .

...
xt1 xt2 · · · xtp
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PCA PCA

Principal Component Analysis

Using PCA, we find that the set of OD flows has small intrinsic
dimension (10 or less)

Stability over time of this kind of representation (from week to week)

Origin Destination Flows

An OD flow consists of all traffic entering the network at a given point,
and exiting the network at some other point, this is one out of the
three traffic aggregations analyzed.

High dimensional multivariate structure

PCA: lower dimensional approximation
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PCA PCA

Principal Component Analysis

Generalization of PCA to higher dimensions, as in the case
of X , take the rows of X as points in Euclidean space, so
that we have a dataset of t points in Rp

Mapping the data onto the first r principal axes places the
data into an r -dimensional hyperplane.
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PCA PCA

Linear algebraic formulation

Calculating the principal components is equivalent to
solving the symmetric eigenvalue problem for the matrix
X T X
Each principal component vi is the i-th eigenvector
computed from the spectral decomposition of X T X :

X T Xvi = λivi i = 1, . . .p (3)

Where λi is the eigenvalue corrisponding to vi

k -th principal component:

vk = arg max
||v ||=1

||(X −
k−1∑
i=1

XvivT
i )v ||
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PCA PCA

Principal Component Analysis

Once the data have been mapped into principal component
space, it can be useful to examine the transformed data one
dimension at a time:

The contribution of principal axis i as a function of time is given
by Xvi

This vector can be normalized to unit length by dividing by
σi =

√
λi

Thus, we have for each principal axis i :

ui =
Xvi

σi
i = 1, . . . ,p (4)

The ui (eigenflows) are vectors of size t and orthogonal by construction
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PCA PCA

Principal Component Analysis

Thus vector ui captures the temporal variation common to
all flows along principal axis i
The set of principal components {vi}pi=1 can be arranged in
order as columns of a principal matrix Vp×p

Likewise we can form the matrix Ut×p in which column i is
ui

Then taken together, V , U, and σi can be arranged to
write each traffic aggregate Xi as:

Xi

σi
= U(V T )i i = 1, . . . ,p (5)

Xi is the time-series of the i-th traffic aggregate and (V T )i is the i-th row of V
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PCA PCA

Principal Component Analysis

Equation 5 makes clear that each traffic aggregate Xi is in turn
a linear combination of the ui , with associated weights (V T )i

The elements of {σi}ki=1 are the singular values

||Xvi || = vT
i X T Xvi = λivT

i vi = λi (6)

Thus, the singular values are useful for gauging the
potential for reduced dimensionality in the data, often
simply through their visual examination in a scree plot
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PCA PCA

Scree Plot

Energy Percentages captured by first PCs
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PCA PCA

Lower Dimensional Approximation

Finding that only r singular values are non-negligible,
implies that X effectively resides on an r -dimensional
subspace of Rp:

X ′ ≈
r∑

i=1

σiuivi (7)

where r < p is the effective intrinsic dimension of X
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PCA Detection and Identification

Subspace Method

Subspace Method
This method is based on a separation of the high-dimensional
space occupied by a set of network traffic measurements into
disjoint subspaces corresponding to normal and anomalous
network conditions.

This separation can be performed effectively by Principal
Component Analysis
Once the principal axes have been determined, the
data-set can be mapped onto the new axes

1 Normal subspace: S
2 Anomalous Subspace: S̃
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PCA Detection and Identification

Modeled and Residual Part of x

Detecting volume anomalies in link traffic relies on the
separation of link traffic x at any time-step into normal and
anomalous components:

1 modeled part of x
2 residual part of x

We seek to decompose the set of link measurements at a given
point in time x :

x = x̂ + x̃

We form x̂ by projecting x onto S, and we form x̃ by projecting x onto S̃
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PCA Detection and Identification

Anomalous Subspace

Anomalous Subspace, x̃
To accomplish this, we arrange the set of principal components
corresponding to the normal subspace (v1, v2, . . . , vr ) as
columns of a matrix P of size m × r where r denotes the
number of normal axes.

x̂ = PPT x = Cx and x̃ = (I − PPT )x = C̃x
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PCA Detection and Identification

Squared Prediction Error

A useful statistic for detecting abnormal changes in x̃ is the
Squared Prediction Error (SPE):

SPE = ||x̃ ||2 = ||C̃x ||2

and we may consider network traffic to be normal if:

SPE ≤ threshold
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PCA Detection and Identification

Identification

Now we know the anomalous time bin
We don’t know which is the anomalous traffic aggregate
responsible for this anomaly

Identification, for every ||x̃ ||2 over the threshold:

We determine the smallest set of OD flows, which if removed
from the corresponding statistic, would bring it under threshold.

C. Callegari Anomaly Detection 120 / 169



PCA Detection and Identification

Multiway Subspace Method

The distributions of packet features (IP addresses and
ports) observed in flow traces reveal both the presence
and the structure of a wide range of anomalies.
They enable highly sensitive detection of a wide range of
anomalies
Traffic Features:

1 Src IP
2 Dest IP
3 Src Port
4 Dest Port
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PCA Detection and Identification

Features Distributions

Many important kinds of traffic anomalies cause changes
in the distribution of addresses or ports observed in traffic
How feature distributions change as the result of a traffic
anomaly (e.g., port scan)
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Figure 1: Distribution changes induced by a port scan anomaly.
Upper: dispersed destination ports; lower: concentrated desti-
nation IPs.

where is the total number of observations in the his-
togram. The value of sample entropy lies in the range .
The metric takes on the value 0 when the distribution is maximally
concentrated, i.e., all observations are the same. Sample entropy
takes on the value when the distribution is maximally dis-
persed, i.e.,
Sample entropy can be used as an estimator for the source en-

tropy of an ergodic stochastic process. However it is not our intent
here to use sample entropy in this manner. We make no assump-
tions about ergodicity or stationarity in modeling our data. We sim-
ply use sample entropy as a convenient summary statistic for a dis-
tribution’s tendency to be concentrated or dispersed. Furthermore,
entropy is not the only metric that captures a distribution’s concen-
tration or dispersal; however we have explored other metrics and
find that entropy works well in practice.
In this paper we compute the sample entropy of feature distribu-

tions that are constructed from packet counts. The range of values
taken on by sample entropy depends on the number of distinct
values seen in the sampled set of packets. In practice we find that
this means that entropy tends to increase when sample sizes in-
crease, i.e., when traffic volume increases. This has a number of
implications for our approach. In the detection process, it means
that anomalies showing unusual traffic volumes will also some-
times show unusual entropy values. Thus some anomalies detected
on the basis of traffic volume are also detected on the basis of en-
tropy changes. In the classification process, the effect of this phe-
nomenon is mitigated by normalizing entropy values as explained
in Section 4.3.
Entropy is a sensitive metric for detecting and classifying

changes in traffic feature distributions. Later (Section 7.2.2) we
will show that each of the anomalies in Table 1 can be classified by
its effect on feature distributions. Here, we illustrate the effective-
ness of entropy for anomaly detection via the example in Figure 2.
The figure shows plots of various traffic metrics around the time

of the port scan anomaly whose histograms were previously shown
in Figure 1. The timepoint containing the anomaly is marked with
a circle. The upper two timeseries show the number of bytes and
packets in the origin-destination flow containing this anomaly. The
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Figure 2: Port scan anomaly viewed in terms of traffic volume
and in terms of entropy.

lower two timeseries show the values of sample entropy for desti-
nation IP and destination port. The upper two plots show that the
port scan is difficult to detect on the basis of traffic volume, i.e., the
number of bytes and packets in 5 minute bins. However, the lower
two plots show that the port scan stands out clearly when viewed
through the lens of sample entropy. Entropy of destination IPs de-
clines sharply, consistent with a distributional concentration around
a single address, and entropy of destination ports rises sharply, con-
sistent with a dispersal in the distribution of observed ports.

4. DIAGNOSIS METHODOLOGY
Our anomaly diagnosis methodology leverages these observa-

tions about entropy to detect and classify anomalies. To detect
anomalies, we introduce the multiway subspace method, and show
how it can be used to detect anomalies across multiple traffic fea-
tures, and across multiple Origin-Destination (or point to point)
flows. To classify anomalies, we adopt an unsupervised classifica-
tion strategy and show how to cluster structurally similar anomalies
together. Together, the multiway subspace method and the clus-
tering algorithms form the foundation of our anomaly diagnosis
methodology.

4.1 The Subspace Method
Before introducing the multiway subspace method, we first re-

view the subspace method itself.
The subspace method was developed in statistical process con-

trol, primarily in the chemical engineering industry [7]. Its goal is
to identify typical variation in a set of correlated metrics, and detect
unusual conditions based on deviation from that typical variation.
Given a data matrix in which columns represent variables

or features, and rows represent observations, the subspace method
works as follows. In general we assume that the features show
correlation, so that typical variation of the entire set of features can
be expressed as a linear combination of less than variables. Using
principal component analysis, one selects the new set of
variables which define an -dimensional subspace. Then normal
variation is defined as the projection of the data onto this subspace,
and abnormal variation is defined as any significant deviation of the
data from this subspace.
In the specific case of network data, this method is motivated by

results in [25] which show that normal variation of OD flow traffic
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Entropy

The distribution of traffic features is a high-dimensional object
and so can be difficult to work with directly.

1 Analyze the degree of dispersal or concentration of the
distribution

2 A metric that captures the degree of dispersal or
concentration of a distribution is sample entropy

3 Empirical histogram Y = {ni , i = 1, . . . ,N}
4 Sample entropy:

H(Y ) = −
N∑

i=1

ni

S
log2

ni

S

where S =
PN

i=1 ni is the total number of observations in the histogram
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Multiway Anomalies

Anomalies typically induce changes in multiple traffic features.

Figure 3: Multivariate, multi-way data to analyze.

is well described as occupying a low dimensional space. This low
dimensional space is called the normal subspace, and the remaining
dimensions are called the residual subspace.
Having constructed the normal and residual subspaces, one can

decompose a set of traffic measurements at a particular point in
time, , into normal and residual components: The
size ( norm) of is a measure of the degree to which the par-
ticular measurement is anomalous. Statistical tests can then be
formulated to test for unusually large , based on setting a de-
sired false alarm rate [13].
The separation of features into distinct subspaces can be accom-

plished by various methods. For our datasets (introduced in Sec-
tion 5), we found a knee in the amount of variance captured at

(which accounted for 85% of the total variance); we there-
fore used the first 10 principal components to construct the normal
subspace.

4.2 The Multiway Subspace Method
We introduce the multiway subspace method in order to address

the following problem. As shown in Table 1, anomalies typically
induce changes in multiple traffic features. To detect an anomaly in
an OD flow, we must be able to isolate correlated changes (positive
or negative) across all its four traffic features (addresses and ports).
Moreover, multiple OD flows may collude to produce network-
wide anomalies. Therefore, in addition to analyzing multiple traffic
features, a detection method must also be able to extract anomalous
changes across the ensemble of OD flows.
A visual representation of this multiway (spanning multiple traf-

fic features) and multivariate (spanning mulitple OD flows) data is
presented in Figure 3. There are four matrices, one for each traf-
fic feature. Each matrix represents the multivariate timeseries of a
particular metric for the ensemble of OD flows in the network.
Let denote the three-way data matrix in Figure 3. is com-

posed of the multivariate entropy timeseries of all the OD flows,
organized by distinct feature matrices; denotes the en-
tropy value at time for OD flow , of the traffic feature . We
denote the individual matrices by srcIP , dstIP , srcPort ,
and dstPort . Each matrix is of size , and contains the en-
tropy timeseries of length bins for OD flows for a specific traffic
feature. Anomalous values in any feature and any OD flow corre-
spond to outliers in this multiway data; the task at hand is to mine
for outliers in .
The multiway subspace method draws on ideas that have been

well studied in multivariate statistics [16]. An effective way of
analyzing multiway data is to recast it into a simpler, single-way
representation. The idea behind the multiway subspace method is
to “unfold” the multiway matrix in Figure 3 into a single, large ma-

trix. And, once this transformation from multiway to single-way
is complete, the subspace method (which in general is designed
for single-way data [23]) can be applied to detect anomalies across
different OD flows and different features.
We unwrap by arranging each individual feature matrix side

by side. This results in a new, merged matrix of size , which
contains the ensemble of OD flows, organized in submatrices for
the four traffic features. We denote this merged matrix by . The
first columns of represent the source IP entropy submatrix of
the ensemble of OD flows. The next columns (from column

to ) of contain the source port submatrix, followed by the
destination IP submatrix (columns to ) and the destination
port submatrix (columns to ). Each submatrix of must
be normalized to unit energy, so that no one feature dominates our
analysis. Normalization is achieved by dividing each element in a
submatrix by the total energy of that submatrix. In all subsequent
discussion we assume that has been normalized to unit energy
within each submatrix.
Having unwrapped the multiway data structure of Figure 3, we

can now apply standard multivariate analysis techniques, in partic-
ular the subspace method, to analyze .
Once has been unwrapped to produce , detection of multi-

way anomalies in via the standard subspace method. Each OD
flow feature can be expressed as a sum of normal and anomalous
components. In particular, we can write a row of at time , de-
noted by , where is the portion of contained the
-dimensional normal subspace, and contains the residual en-
tropy.
Anomalies can be detected by inspecting the size of vector,

which is given by . Unusually large values of signal
anomalous conditions, and following [23], we can set detection
thresholds that correspond to a given false alarm rate for .

Multi-attribute Identification
Detection tells us the point in time when an anomaly occured. To
isolate a particular anomaly, we need to identify the OD flow(s)
involved in the anomaly. In the subspace framework, an anomaly
triggers a displacement of the state vector away from the normal
subspace. It is the direction of this displacement that is used when
identifying the participating OD flow(s). We follow the general
approach in [23] with extensions to handle the multiway setting.
The identification method proposed in [23] focused on one di-

mensional anomalies (corresponding to a single flow), whereas we
seek to identify multidimensional anomalies (anomalies spanning
multiple features of a single flow). As a result we extend the pre-
vious method as follows. Let be a binary matrix. For
each OD flow , we construct a such that
for The result is that can be used to “select” the
features from belonging to flow . Then when an anomaly is
detected, the feature state vector can be expressed as:

where denotes the typical entropy vector, specified the
components of belonging to OD flow , and is the amount
of change in entropy due to OD flow . The final step to
identifying which flow contains the anomaly is to select

We do not restrict ourselves to iden-
tifying only a single OD flow using this method; we reapply our
method recursively until the resulting state vector is below the de-
tection threshold.
The simultaneous treatment of traffic features for the ensemble

of OD flows via the multiway subspace method has two principal
advantages. First, normal behavior is defined by common patterns
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Multiway Subspace Method

Anomalies Spanning multiple traffic features
Unfold the multiway matrix in Figure into a single, large
matrix
With this technique subspace method can detect
anomalies spanning multiple traffic features
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Figure 1: The Architecture

data type used for the traffic matrix was byte-counts instead
of entropy values, then a cell item vi,j would uniquely map
to the number of packets carried by router j, for example,
at time i.

There are many ways to perform structural traffic aggre-
gation, each with different statistical properties, e.g. differ-
ent number of constituent flows, distribution in flow size,
etc. Our research demonstrates that the choice of traffic ag-
gregation can significantly impact the effectiveness of PCA
as a traffic anomaly detector, and hence it is important to
study several such formalisms.

It is often natural to perform this structural aggregation
of IP flows according to where they enter and exit in the
network. We analyzed three such aggregations, viz. ingress
routers, OD flows, and input links. For ingress routers, the
data is aggregated according to which router it entered the
network, e.g. there are 11 such flows for Abilene because
it has 11 routers and they all accept incoming traffic. Per-
forming this aggregation is straightforward because there are
separate IP flow logs for each ingress router. For the “input
links” aggregation, IP flow records are aggregated by
〈ingress router, input interface〉 tuples, which is also com-
putationally uncomplicated because IP flow records con-
tain the necessary interface information. An OD, or origin-
destination, flow uniquely identifies which ingress and egress
router an IP flow traversed while inside the network. Iden-
tification of the egress point e for a given
〈ingress router, prefix〉 pair requires parsing of routing logs
as explained in section 3.1.

3.3 PCA Anomaly Detector
The Matlab code that performs the PCA calculations was

written by Lakhina et al. [14] and was graciously donated
for our work. As detailed in section 2, it builds a model
for normal traffic for the given traffic matrix and topk pa-
rameter, and classifies a given time and flow as anomalous
if the statistical outlier at that time exceeds the threshold
parameter. We wrote wrapper code around this software in
order to sweep a range of parameters, as is diagrammed by
the dial knobs in figure 1, to evaluate PCA’s sensitivity to
these parameters.

Applying PCA to network-wide traffic measurements in-
troduces several complications. First, because statistical

tools such as PCA analyze timeseries, they classify indi-
vidual time bins as anomalous, which are different from the
underlying network events that may have caused the de-
tection. In fact, a given anomalous time bin may contain
multiple anomalous events of interest to a network opera-
tor and, vice versa, one anomalous event may span multi-
ple time-bins. For simplicity, we use the term “anomaly”
as shorthand for “anomalous time bin” in the remainder of
this paper, consistent with previous work.

Second, PCA requires the length of the time series (i.e., n)
to be greater than or equal to the number of measurements
(i.e., m). In addition, the value of m depends not only on
the number of locations (e.g., input links, ingress routers, or
OD pairs), but also on the number of measurements included
from each vantage point. Jointly analyzing entropy for the
four IP traffic descriptors exploits PCA’s ability to find cor-
relations across dimensions, at the expense of requiring an
even longer time series. For example, the Geant network
has 23 routers, which produces 552 OD flows. This requires
a minimum of 552 × 4 = 2208 time-steps, which is equal to
2208×15
60×24

= 23 days since Geant aggregates its flow records
into 15-minute time bins. Analyzing such a large amount of
data simultaneously can be impractical, which is why we do
not include a Geant OD-flow dataset in our study (see ta-
ble 3). Moderately sized networks may therefore be unable
to run a PCA-based traffic anomaly detector on top of OD
flows, which can be a very fruitful traffic aggregation [12].

In addition to the hard limit on how many time-steps
must be analyzed concurrently, the increase in the number
of variables processed by PCA also comes at a computational
overhead. The algorithm most commonly used for perform-
ing PCA—singular value decomposition (SVD)—takes time
O(nm2). Having ! measurements per vantage point not
only increases m by a factor of ! but may (for the reasons
explained in the previous paragraph) also increase n by the
same factor, leading to an O(!3) factor increase in the com-
putational overhead associated with applying PCA2.

2These issues could potentially be addressed by the tech-
nique proposed in [23] for conceptually combining routers
according to topology, but we have not evaluated its effec-
tiveness in this context.
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Figure 1: Distribution changes induced by a port scan anomaly.
Upper: dispersed destination ports; lower: concentrated desti-
nation IPs.

where is the total number of observations in the his-
togram. The value of sample entropy lies in the range .
The metric takes on the value 0 when the distribution is maximally
concentrated, i.e., all observations are the same. Sample entropy
takes on the value when the distribution is maximally dis-
persed, i.e.,
Sample entropy can be used as an estimator for the source en-

tropy of an ergodic stochastic process. However it is not our intent
here to use sample entropy in this manner. We make no assump-
tions about ergodicity or stationarity in modeling our data. We sim-
ply use sample entropy as a convenient summary statistic for a dis-
tribution’s tendency to be concentrated or dispersed. Furthermore,
entropy is not the only metric that captures a distribution’s concen-
tration or dispersal; however we have explored other metrics and
find that entropy works well in practice.
In this paper we compute the sample entropy of feature distribu-

tions that are constructed from packet counts. The range of values
taken on by sample entropy depends on the number of distinct
values seen in the sampled set of packets. In practice we find that
this means that entropy tends to increase when sample sizes in-
crease, i.e., when traffic volume increases. This has a number of
implications for our approach. In the detection process, it means
that anomalies showing unusual traffic volumes will also some-
times show unusual entropy values. Thus some anomalies detected
on the basis of traffic volume are also detected on the basis of en-
tropy changes. In the classification process, the effect of this phe-
nomenon is mitigated by normalizing entropy values as explained
in Section 4.3.
Entropy is a sensitive metric for detecting and classifying

changes in traffic feature distributions. Later (Section 7.2.2) we
will show that each of the anomalies in Table 1 can be classified by
its effect on feature distributions. Here, we illustrate the effective-
ness of entropy for anomaly detection via the example in Figure 2.
The figure shows plots of various traffic metrics around the time

of the port scan anomaly whose histograms were previously shown
in Figure 1. The timepoint containing the anomaly is marked with
a circle. The upper two timeseries show the number of bytes and
packets in the origin-destination flow containing this anomaly. The
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Figure 2: Port scan anomaly viewed in terms of traffic volume
and in terms of entropy.

lower two timeseries show the values of sample entropy for desti-
nation IP and destination port. The upper two plots show that the
port scan is difficult to detect on the basis of traffic volume, i.e., the
number of bytes and packets in 5 minute bins. However, the lower
two plots show that the port scan stands out clearly when viewed
through the lens of sample entropy. Entropy of destination IPs de-
clines sharply, consistent with a distributional concentration around
a single address, and entropy of destination ports rises sharply, con-
sistent with a dispersal in the distribution of observed ports.

4. DIAGNOSIS METHODOLOGY
Our anomaly diagnosis methodology leverages these observa-

tions about entropy to detect and classify anomalies. To detect
anomalies, we introduce the multiway subspace method, and show
how it can be used to detect anomalies across multiple traffic fea-
tures, and across multiple Origin-Destination (or point to point)
flows. To classify anomalies, we adopt an unsupervised classifica-
tion strategy and show how to cluster structurally similar anomalies
together. Together, the multiway subspace method and the clus-
tering algorithms form the foundation of our anomaly diagnosis
methodology.

4.1 The Subspace Method
Before introducing the multiway subspace method, we first re-

view the subspace method itself.
The subspace method was developed in statistical process con-

trol, primarily in the chemical engineering industry [7]. Its goal is
to identify typical variation in a set of correlated metrics, and detect
unusual conditions based on deviation from that typical variation.
Given a data matrix in which columns represent variables

or features, and rows represent observations, the subspace method
works as follows. In general we assume that the features show
correlation, so that typical variation of the entire set of features can
be expressed as a linear combination of less than variables. Using
principal component analysis, one selects the new set of
variables which define an -dimensional subspace. Then normal
variation is defined as the projection of the data onto this subspace,
and abnormal variation is defined as any significant deviation of the
data from this subspace.
In the specific case of network data, this method is motivated by

results in [25] which show that normal variation of OD flow traffic
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each one of these, and believe that most of these are not
anomalies. For example, 2 detections from Abilene and 3
detections from Dante appeared to be traffic from servers to
clients on different ports. Another 4 from Dante are small
point-to-point flows transferring fewer than 100 small pack-
ets, and 5 from Abilene that are frequently recurring Samba
over IP flows that do not appear anomalous. This leaves us
with 4 and 1 true missed detections for Abilene and Dante
respectively. The 4 in Abilene belong to two anomalies, a
flash crowd and an alpha flow. The 1 in Dante is an alpha
flow.

IP-flow Identification. One of Defeat’s advantages is that
it can automatically identify IP flows that were responsible
for the anomalies in a given time bin. Table 5 shows a small,
randomly chosen, set of IP flows that Defeat identified, us-
ing the algorithm described in Section 2. In this table, we
have omitted a detailed listing of the anomalous IP flows, for
brevity. We have manually verified these anomalies. Unlike
Defeat, [8] can only automatically identify the time bin dur-
ing which an anomaly was detected, and the OD flows con-
taining the anomaly or anomalies (a single OD flow might
contain more than one anomaly, but that method cannot
infer this).

3.1 Exploring the Parameter Space
Defeat has several parameters which can affect its detec-

tion perfomance. We now consider the effect of varying these
parameters.
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Figure 3: The probability of missed detections as
a function of the normal space size for the Abilene
data set.

Normal Space Size. How many principal components
should be used to construct the normal subspace? One way
to answer this question is to examine (by plotting graphs
similar to Figure 2) the eigenflows generated by each sketch
corresponding to the principal components (PCs) in order,
and determine that component at which the eigenflows start
to differ substantially. We have observed, using this method-
ology, that around 10-20 PCs define the normal subspace for
both data sets. Another approach is to examine how De-
feat’s performance varies, vis-a-vis [8], with changing num-
bers of PCs. Figure 3 and 4 show that across different key
definitions and for both data sets, Defeat’s missed detections
are lowest when the normal subspace has 10-20 PCs. For this
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Figure 4: The probability of missed detections as a
function of the normal space size for the Dante data
set.

reason, we chose 10 PCs in our evaluations; this choice is
consistent with that of [8]. As an aside, notice that missed
detection rates increase dramatically when fewer than 10
PCs are used; intuitively, this choice shifts higher volume
normal traffic into the residual space, making it harder to
detect anomalies.

In what follows, we use 10 PCs. Furthermore, we have
omitted, for space reasons, the Abilene data set. However,
all our observations below hold for Abilene as well.

Sketch Size. Figure 5 plots Defeat performance as a func-
tion of sketch size. Each curve represents a different sketch
size, and different data points represent different votes from
11 different hash functions: the point on the top right of a
curve represents a detection by at least one hash function
(union) and the point on the bottom left represents detec-
tions by all hash functions.

Large sketch sizes decrease the missed detection rates and
increase the addtional detection rates. Since, as we show
above, the additional detections are likely to be true anoma-
lies, larger sketch sizes perform better than smaller ones.
For our data sets, sketch size 1024 is a good choice since
the probability of detections (1 - missed detection rate) is
greater than 90% for both data sets. Our choice of a sketch
size of 484 in our performance comparison was dictated by
the need to make an even comparison with [8]; however, this
figure shows that Defeat can perform better (detect more
anomalies, with fewer false alarms) with a larger sketch size.

Number of Hash Functions. How many hash functions
are sufficient for high detection rates? As Figure 6 shows,
there exists a knee after which increasing of the number of
hash functions does not improve detection rate. For most
sketch sizes, this knee is the same, at 5 or 6 hash functions.
While this needs more extensive data analysis, it is encour-
aging to note that a small number of hash functions suffices
for accurate anomaly detection.

Voting Schemes. Figure 7 plots the detection rates against
the false alarm rates for different numbers of votes. This
figure uses as the definition of true anomalies those found
in our detailed manual inspection, which yields a more ac-
curate (and higher) detection probability and (lower) false
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each one of these, and believe that most of these are not
anomalies. For example, 2 detections from Abilene and 3
detections from Dante appeared to be traffic from servers to
clients on different ports. Another 4 from Dante are small
point-to-point flows transferring fewer than 100 small pack-
ets, and 5 from Abilene that are frequently recurring Samba
over IP flows that do not appear anomalous. This leaves us
with 4 and 1 true missed detections for Abilene and Dante
respectively. The 4 in Abilene belong to two anomalies, a
flash crowd and an alpha flow. The 1 in Dante is an alpha
flow.

IP-flow Identification. One of Defeat’s advantages is that
it can automatically identify IP flows that were responsible
for the anomalies in a given time bin. Table 5 shows a small,
randomly chosen, set of IP flows that Defeat identified, us-
ing the algorithm described in Section 2. In this table, we
have omitted a detailed listing of the anomalous IP flows, for
brevity. We have manually verified these anomalies. Unlike
Defeat, [8] can only automatically identify the time bin dur-
ing which an anomaly was detected, and the OD flows con-
taining the anomaly or anomalies (a single OD flow might
contain more than one anomaly, but that method cannot
infer this).

3.1 Exploring the Parameter Space
Defeat has several parameters which can affect its detec-

tion perfomance. We now consider the effect of varying these
parameters.
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Figure 3: The probability of missed detections as
a function of the normal space size for the Abilene
data set.

Normal Space Size. How many principal components
should be used to construct the normal subspace? One way
to answer this question is to examine (by plotting graphs
similar to Figure 2) the eigenflows generated by each sketch
corresponding to the principal components (PCs) in order,
and determine that component at which the eigenflows start
to differ substantially. We have observed, using this method-
ology, that around 10-20 PCs define the normal subspace for
both data sets. Another approach is to examine how De-
feat’s performance varies, vis-a-vis [8], with changing num-
bers of PCs. Figure 3 and 4 show that across different key
definitions and for both data sets, Defeat’s missed detections
are lowest when the normal subspace has 10-20 PCs. For this
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Figure 4: The probability of missed detections as a
function of the normal space size for the Dante data
set.

reason, we chose 10 PCs in our evaluations; this choice is
consistent with that of [8]. As an aside, notice that missed
detection rates increase dramatically when fewer than 10
PCs are used; intuitively, this choice shifts higher volume
normal traffic into the residual space, making it harder to
detect anomalies.

In what follows, we use 10 PCs. Furthermore, we have
omitted, for space reasons, the Abilene data set. However,
all our observations below hold for Abilene as well.

Sketch Size. Figure 5 plots Defeat performance as a func-
tion of sketch size. Each curve represents a different sketch
size, and different data points represent different votes from
11 different hash functions: the point on the top right of a
curve represents a detection by at least one hash function
(union) and the point on the bottom left represents detec-
tions by all hash functions.

Large sketch sizes decrease the missed detection rates and
increase the addtional detection rates. Since, as we show
above, the additional detections are likely to be true anoma-
lies, larger sketch sizes perform better than smaller ones.
For our data sets, sketch size 1024 is a good choice since
the probability of detections (1 - missed detection rate) is
greater than 90% for both data sets. Our choice of a sketch
size of 484 in our performance comparison was dictated by
the need to make an even comparison with [8]; however, this
figure shows that Defeat can perform better (detect more
anomalies, with fewer false alarms) with a larger sketch size.

Number of Hash Functions. How many hash functions
are sufficient for high detection rates? As Figure 6 shows,
there exists a knee after which increasing of the number of
hash functions does not improve detection rate. For most
sketch sizes, this knee is the same, at 5 or 6 hash functions.
While this needs more extensive data analysis, it is encour-
aging to note that a small number of hash functions suffices
for accurate anomaly detection.

Voting Schemes. Figure 7 plots the detection rates against
the false alarm rates for different numbers of votes. This
figure uses as the definition of true anomalies those found
in our detailed manual inspection, which yields a more ac-
curate (and higher) detection probability and (lower) false
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Some remarks on the method:
The false-positive rate is very sensitive to the
dimensionality of the normal subspace
The effectiveness of PCA is sensitive to the way the traffic
measurements are aggregated
Large anomalies can contaminate the normal sub-space
Pinpointing the anomalous flows is inherently difficult
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4. TUNABLE PARAMETERS
The following section will evaluate PCA’s sensitivity to

its two key parameters, viz. the number of dimensions that
constitute its normal subspace in section 4.1 and the detec-
tion threshold in section 4.2.

4.1 Size of Normal Subspace
The number of principal components included in the nor-

mal subspace—the topk parameter—is the most important
parameter to be tuned when using PCA as a traffic anomaly
detector. Past literature has made four important claims in
this context: (i) traffic traces have low intrinsic dimension-
ality, which means that topk can be small, (ii) these first few
principal components capture the vast majority of the vari-
ance in the data, (iii) the same principal components are also
highly periodic and thus capture the diurnal trends sought
to be included in the normal subspace, and (iv) identify-
ing the separation between normal and anomalous principal
components can be done by retaining the first k principal
components such that the projection of the traffic data does
not contain a 3σ deviation from the mean [14, 12]. The
following sub-sections show, in order, that the second claim
does not hold across all networks and traffic aggregations,
that the effectiveness of PCA is very sensitive to the topk

parameter, and that the previously proposed techniques for
determining topk are inadequate.

4.1.1 Decoupling Size from Captured Variance
Each of our datasets support the previous finding that

traffic traces have low intrinsic dimensionality, as can be
seen from figure 3(a). The figure contains scree plots for
each of the datasets used in our study. A scree plot is a
plot of percent variance captured by a given principal com-
ponent. We can conclude that traffic traces have low in-
trinsic dimensionality because the corresponding scree plots
have very early knees relative to the original dimensional-
ity of the datasets (seen in table 3). This is an important
observation because it means that only a small fraction of
all principal components need to be included in the normal
subspace to capture the periodic trends that these first few
principal components have been shown to exhibit [14].

However, our results do not support the earlier contention
that the first few principal components necessarily capture
the vast majority of variability in the traffic matrix, which is
demonstrated by figure 3(b), which is the CDF of 3(a) in log-
scale. While the plots in figure 3(a) have knees somewhere
in the range [2, 6], it is much more difficult to argue that
setting topk to a value in this range would correspond to
a vast fraction of variance in figure 3(b). For example, if
an Abilene network operator wanted to capture 90% of the
variance for the input-link aggregation, he would need a topk

value that was an order of magnitude larger than previously
reported in the literature (at least 95). If, on the other hand,
he set topk to match up with the knee seen in figure 3(a),
he would capture less than half of the total variance.

The purpose of this section is not merely to debunk an
earlier coupling of low intrinsic dimensionality and percent
variance captured, but also to highlight that this distinction
is an important one. One should not determine the topk

variable based on percent variance captured (i.e., plot 3(b))
because different networks have different natural levels of
variability, and the normal subspace should capture period-
icity as opposed to a certain fraction of variance. For ex-
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Figure 3: Intrinsic Dimensionality

ample, a research backbone for universities such as Abilene
will likely have a more variable matrix than a tier-1 network
because Abilene is (i) smaller, (ii) is used as an experimen-
tal network, and (iii) only a very limited set of source hosts
gain access to the network. The same heterogeneity is exhib-
ited across different traffic aggregations also, where a more
highly aggregated traffic aggregation such as ingress routers
will have more stable statistical properties than input links,
which may have lots of small flows that are highly variable.
It is therefore important to highlight that the topk param-
eter should not be determined based on cumulative percent
variance captured.

4.1.2 Sensitivity Analysis
PCA is very sensitive to the topk parameter: We

noted previously that the scree plots for our datasets each
appeared to have knees in the range [2, 6]. While that range
might appear small, our results indicate that PCA is very
sensitive to the number of principal components even within
such a limited range. As can be seen from figure 4(a), within
the [2, 6] range, the false-positive rate for Geant ingress
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4. TUNABLE PARAMETERS
The following section will evaluate PCA’s sensitivity to

its two key parameters, viz. the number of dimensions that
constitute its normal subspace in section 4.1 and the detec-
tion threshold in section 4.2.

4.1 Size of Normal Subspace
The number of principal components included in the nor-

mal subspace—the topk parameter—is the most important
parameter to be tuned when using PCA as a traffic anomaly
detector. Past literature has made four important claims in
this context: (i) traffic traces have low intrinsic dimension-
ality, which means that topk can be small, (ii) these first few
principal components capture the vast majority of the vari-
ance in the data, (iii) the same principal components are also
highly periodic and thus capture the diurnal trends sought
to be included in the normal subspace, and (iv) identify-
ing the separation between normal and anomalous principal
components can be done by retaining the first k principal
components such that the projection of the traffic data does
not contain a 3σ deviation from the mean [14, 12]. The
following sub-sections show, in order, that the second claim
does not hold across all networks and traffic aggregations,
that the effectiveness of PCA is very sensitive to the topk

parameter, and that the previously proposed techniques for
determining topk are inadequate.

4.1.1 Decoupling Size from Captured Variance
Each of our datasets support the previous finding that

traffic traces have low intrinsic dimensionality, as can be
seen from figure 3(a). The figure contains scree plots for
each of the datasets used in our study. A scree plot is a
plot of percent variance captured by a given principal com-
ponent. We can conclude that traffic traces have low in-
trinsic dimensionality because the corresponding scree plots
have very early knees relative to the original dimensional-
ity of the datasets (seen in table 3). This is an important
observation because it means that only a small fraction of
all principal components need to be included in the normal
subspace to capture the periodic trends that these first few
principal components have been shown to exhibit [14].

However, our results do not support the earlier contention
that the first few principal components necessarily capture
the vast majority of variability in the traffic matrix, which is
demonstrated by figure 3(b), which is the CDF of 3(a) in log-
scale. While the plots in figure 3(a) have knees somewhere
in the range [2, 6], it is much more difficult to argue that
setting topk to a value in this range would correspond to
a vast fraction of variance in figure 3(b). For example, if
an Abilene network operator wanted to capture 90% of the
variance for the input-link aggregation, he would need a topk

value that was an order of magnitude larger than previously
reported in the literature (at least 95). If, on the other hand,
he set topk to match up with the knee seen in figure 3(a),
he would capture less than half of the total variance.

The purpose of this section is not merely to debunk an
earlier coupling of low intrinsic dimensionality and percent
variance captured, but also to highlight that this distinction
is an important one. One should not determine the topk

variable based on percent variance captured (i.e., plot 3(b))
because different networks have different natural levels of
variability, and the normal subspace should capture period-
icity as opposed to a certain fraction of variance. For ex-
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Figure 3: Intrinsic Dimensionality

ample, a research backbone for universities such as Abilene
will likely have a more variable matrix than a tier-1 network
because Abilene is (i) smaller, (ii) is used as an experimen-
tal network, and (iii) only a very limited set of source hosts
gain access to the network. The same heterogeneity is exhib-
ited across different traffic aggregations also, where a more
highly aggregated traffic aggregation such as ingress routers
will have more stable statistical properties than input links,
which may have lots of small flows that are highly variable.
It is therefore important to highlight that the topk param-
eter should not be determined based on cumulative percent
variance captured.

4.1.2 Sensitivity Analysis
PCA is very sensitive to the topk parameter: We

noted previously that the scree plots for our datasets each
appeared to have knees in the range [2, 6]. While that range
might appear small, our results indicate that PCA is very
sensitive to the number of principal components even within
such a limited range. As can be seen from figure 4(a), within
the [2, 6] range, the false-positive rate for Geant ingress

114

C. Callegari Anomaly Detection 132 / 169



PCA Detection and Identification

Experimental Results

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

# principal components

pe
rc

en
t f

al
se

 p
os

iti
ve

s
geant (threshold = 90%)

 

 

ingress routers
input links

(a) Geant false-positive rate

2 3 4 5 6 7 8 9 10
60

80

100

120

140

160

180

# principal components

to
ta

l d
et

ec
tio

ns

geant (threshold = 90%)

 

 

ingress routers
input links

(b) Geant total detections

2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

# principal components

pe
rc

en
t f

al
se

 p
os

iti
ve

s

abilene (threshold = 90%)

 

 

ingress routers
OD flows
input links

(c) Abilene false-positive rate
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Figure 4: Impact of topk on false-positive rate and
total detections

routers varies between 3.1% and 15.8%. If one ventures be-
yond this range, the performance degradation can be even
more rapid. In the same figure we can see that the false-
positive rate when going from 6 to 8 principal components
for Geant input links increases from 9.2% to 31.6%. It is
therefore extremely important that the topk parameter be
carefully tuned. For the remainder of this paper, we will
define the ’appropriate’ topk value as the one that we con-
sider achieves the best trade-off between the false-positive
rate and the total number of detections.

The appropriate topk value varies across networks
and traffic aggregations: Figure 4 also shows that the
appropriate number of principal components to incorporate
into the normal subspace varies across networks and traffic
aggregations. For example, the appropriate choice of prin-
cipal components is probably 2 for Abilene ingress routers,
3 for Geant ingress routers, and 5 for Abilene OD-flows. It
is interesting to note that the relative order of these three
datasets in terms of topk value is identical to their rela-
tive ordering in terms of original dimensionality (see: total
number of flows in table 3). We hypothesize that this phe-
nomenon will hold in general, and further research might
provide rule-of-thumb guidelines that map
〈original dimensionality, scree knee〉 tuples to a topk value.
Guidelines are not sound methodology, however, and PCA’s
sensitivity to the topk parameter necessitates a robust method-
ology.

Comparison of traffic aggregations: Finally, figure 4
shows that the choice of traffic aggregation has a strong
impact on PCA’s performance. Choosing the right traf-
fic aggregation is tricky: too much aggregation will lead to
smooth and predictable flow curves whereas too little aggre-
gation yields a very heavy-tailed flow-size distribution (see
figure 2) and hence some highly variable small flows whose
spikes are not of interest to network operators. In particular,
for both Abilene in figure 4(d) and Geant in figure 4(b), it is
clear that the ingress router aggregation consistently detects
fewer anomalies than OD flows and input links. The reason
for this is that at the level of ingress routers, the data is so
aggregated and the flows are so large that most anomalies
are effectively drowned. This also means that the anomalies
that are flagged by PCA when using this aggregation-level
tend to be large and obvious. Hence, at its appropriate
topk value (e.g. 3 for Geant and 2 for Abilene), the ingress
routers aggregation has the lowest false-positive rate of the
three traffic aggregations studied for both networks.

On the other end of our aggregation spectrum, input links’
false-positive rate suffers as a result of a large fraction of
small flows. Abilene input links is particularly bad in fig-
ure 4(c) in that its false-positive rate never goes below 40%.
It holds across both networks that, at their respective ap-
propriate topk values, the input links aggregation has the
highest false-positive rate of the three formalisms. We be-
lieve this can be largely contributed to an excess of small
flows whose natural variance cause alarms to be raised by
the PCA traffic anomaly detector.

For the Abilene network (figures 4(c) and 4(d)), it seems
clear that OD-flows is the traffic aggregation that achieves
the best overall trade-off between total detections and false-
positive rate. Our findings support earlier papers [14] that
have demonstrated that OD-flows is a fruitful traffic aggre-
gation for detecting network anomalies. For this same rea-
son, it is doubly frustrating that we are prevented from try-
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Figure 4: Impact of topk on false-positive rate and
total detections

routers varies between 3.1% and 15.8%. If one ventures be-
yond this range, the performance degradation can be even
more rapid. In the same figure we can see that the false-
positive rate when going from 6 to 8 principal components
for Geant input links increases from 9.2% to 31.6%. It is
therefore extremely important that the topk parameter be
carefully tuned. For the remainder of this paper, we will
define the ’appropriate’ topk value as the one that we con-
sider achieves the best trade-off between the false-positive
rate and the total number of detections.

The appropriate topk value varies across networks
and traffic aggregations: Figure 4 also shows that the
appropriate number of principal components to incorporate
into the normal subspace varies across networks and traffic
aggregations. For example, the appropriate choice of prin-
cipal components is probably 2 for Abilene ingress routers,
3 for Geant ingress routers, and 5 for Abilene OD-flows. It
is interesting to note that the relative order of these three
datasets in terms of topk value is identical to their rela-
tive ordering in terms of original dimensionality (see: total
number of flows in table 3). We hypothesize that this phe-
nomenon will hold in general, and further research might
provide rule-of-thumb guidelines that map
〈original dimensionality, scree knee〉 tuples to a topk value.
Guidelines are not sound methodology, however, and PCA’s
sensitivity to the topk parameter necessitates a robust method-
ology.

Comparison of traffic aggregations: Finally, figure 4
shows that the choice of traffic aggregation has a strong
impact on PCA’s performance. Choosing the right traf-
fic aggregation is tricky: too much aggregation will lead to
smooth and predictable flow curves whereas too little aggre-
gation yields a very heavy-tailed flow-size distribution (see
figure 2) and hence some highly variable small flows whose
spikes are not of interest to network operators. In particular,
for both Abilene in figure 4(d) and Geant in figure 4(b), it is
clear that the ingress router aggregation consistently detects
fewer anomalies than OD flows and input links. The reason
for this is that at the level of ingress routers, the data is so
aggregated and the flows are so large that most anomalies
are effectively drowned. This also means that the anomalies
that are flagged by PCA when using this aggregation-level
tend to be large and obvious. Hence, at its appropriate
topk value (e.g. 3 for Geant and 2 for Abilene), the ingress
routers aggregation has the lowest false-positive rate of the
three traffic aggregations studied for both networks.

On the other end of our aggregation spectrum, input links’
false-positive rate suffers as a result of a large fraction of
small flows. Abilene input links is particularly bad in fig-
ure 4(c) in that its false-positive rate never goes below 40%.
It holds across both networks that, at their respective ap-
propriate topk values, the input links aggregation has the
highest false-positive rate of the three formalisms. We be-
lieve this can be largely contributed to an excess of small
flows whose natural variance cause alarms to be raised by
the PCA traffic anomaly detector.

For the Abilene network (figures 4(c) and 4(d)), it seems
clear that OD-flows is the traffic aggregation that achieves
the best overall trade-off between total detections and false-
positive rate. Our findings support earlier papers [14] that
have demonstrated that OD-flows is a fruitful traffic aggre-
gation for detecting network anomalies. For this same rea-
son, it is doubly frustrating that we are prevented from try-
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Figure 4: Impact of topk on false-positive rate and
total detections

routers varies between 3.1% and 15.8%. If one ventures be-
yond this range, the performance degradation can be even
more rapid. In the same figure we can see that the false-
positive rate when going from 6 to 8 principal components
for Geant input links increases from 9.2% to 31.6%. It is
therefore extremely important that the topk parameter be
carefully tuned. For the remainder of this paper, we will
define the ’appropriate’ topk value as the one that we con-
sider achieves the best trade-off between the false-positive
rate and the total number of detections.

The appropriate topk value varies across networks
and traffic aggregations: Figure 4 also shows that the
appropriate number of principal components to incorporate
into the normal subspace varies across networks and traffic
aggregations. For example, the appropriate choice of prin-
cipal components is probably 2 for Abilene ingress routers,
3 for Geant ingress routers, and 5 for Abilene OD-flows. It
is interesting to note that the relative order of these three
datasets in terms of topk value is identical to their rela-
tive ordering in terms of original dimensionality (see: total
number of flows in table 3). We hypothesize that this phe-
nomenon will hold in general, and further research might
provide rule-of-thumb guidelines that map
〈original dimensionality, scree knee〉 tuples to a topk value.
Guidelines are not sound methodology, however, and PCA’s
sensitivity to the topk parameter necessitates a robust method-
ology.

Comparison of traffic aggregations: Finally, figure 4
shows that the choice of traffic aggregation has a strong
impact on PCA’s performance. Choosing the right traf-
fic aggregation is tricky: too much aggregation will lead to
smooth and predictable flow curves whereas too little aggre-
gation yields a very heavy-tailed flow-size distribution (see
figure 2) and hence some highly variable small flows whose
spikes are not of interest to network operators. In particular,
for both Abilene in figure 4(d) and Geant in figure 4(b), it is
clear that the ingress router aggregation consistently detects
fewer anomalies than OD flows and input links. The reason
for this is that at the level of ingress routers, the data is so
aggregated and the flows are so large that most anomalies
are effectively drowned. This also means that the anomalies
that are flagged by PCA when using this aggregation-level
tend to be large and obvious. Hence, at its appropriate
topk value (e.g. 3 for Geant and 2 for Abilene), the ingress
routers aggregation has the lowest false-positive rate of the
three traffic aggregations studied for both networks.

On the other end of our aggregation spectrum, input links’
false-positive rate suffers as a result of a large fraction of
small flows. Abilene input links is particularly bad in fig-
ure 4(c) in that its false-positive rate never goes below 40%.
It holds across both networks that, at their respective ap-
propriate topk values, the input links aggregation has the
highest false-positive rate of the three formalisms. We be-
lieve this can be largely contributed to an excess of small
flows whose natural variance cause alarms to be raised by
the PCA traffic anomaly detector.

For the Abilene network (figures 4(c) and 4(d)), it seems
clear that OD-flows is the traffic aggregation that achieves
the best overall trade-off between total detections and false-
positive rate. Our findings support earlier papers [14] that
have demonstrated that OD-flows is a fruitful traffic aggre-
gation for detecting network anomalies. For this same rea-
son, it is doubly frustrating that we are prevented from try-
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Figure 4: Impact of topk on false-positive rate and
total detections

routers varies between 3.1% and 15.8%. If one ventures be-
yond this range, the performance degradation can be even
more rapid. In the same figure we can see that the false-
positive rate when going from 6 to 8 principal components
for Geant input links increases from 9.2% to 31.6%. It is
therefore extremely important that the topk parameter be
carefully tuned. For the remainder of this paper, we will
define the ’appropriate’ topk value as the one that we con-
sider achieves the best trade-off between the false-positive
rate and the total number of detections.

The appropriate topk value varies across networks
and traffic aggregations: Figure 4 also shows that the
appropriate number of principal components to incorporate
into the normal subspace varies across networks and traffic
aggregations. For example, the appropriate choice of prin-
cipal components is probably 2 for Abilene ingress routers,
3 for Geant ingress routers, and 5 for Abilene OD-flows. It
is interesting to note that the relative order of these three
datasets in terms of topk value is identical to their rela-
tive ordering in terms of original dimensionality (see: total
number of flows in table 3). We hypothesize that this phe-
nomenon will hold in general, and further research might
provide rule-of-thumb guidelines that map
〈original dimensionality, scree knee〉 tuples to a topk value.
Guidelines are not sound methodology, however, and PCA’s
sensitivity to the topk parameter necessitates a robust method-
ology.

Comparison of traffic aggregations: Finally, figure 4
shows that the choice of traffic aggregation has a strong
impact on PCA’s performance. Choosing the right traf-
fic aggregation is tricky: too much aggregation will lead to
smooth and predictable flow curves whereas too little aggre-
gation yields a very heavy-tailed flow-size distribution (see
figure 2) and hence some highly variable small flows whose
spikes are not of interest to network operators. In particular,
for both Abilene in figure 4(d) and Geant in figure 4(b), it is
clear that the ingress router aggregation consistently detects
fewer anomalies than OD flows and input links. The reason
for this is that at the level of ingress routers, the data is so
aggregated and the flows are so large that most anomalies
are effectively drowned. This also means that the anomalies
that are flagged by PCA when using this aggregation-level
tend to be large and obvious. Hence, at its appropriate
topk value (e.g. 3 for Geant and 2 for Abilene), the ingress
routers aggregation has the lowest false-positive rate of the
three traffic aggregations studied for both networks.

On the other end of our aggregation spectrum, input links’
false-positive rate suffers as a result of a large fraction of
small flows. Abilene input links is particularly bad in fig-
ure 4(c) in that its false-positive rate never goes below 40%.
It holds across both networks that, at their respective ap-
propriate topk values, the input links aggregation has the
highest false-positive rate of the three formalisms. We be-
lieve this can be largely contributed to an excess of small
flows whose natural variance cause alarms to be raised by
the PCA traffic anomaly detector.

For the Abilene network (figures 4(c) and 4(d)), it seems
clear that OD-flows is the traffic aggregation that achieves
the best overall trade-off between total detections and false-
positive rate. Our findings support earlier papers [14] that
have demonstrated that OD-flows is a fruitful traffic aggre-
gation for detecting network anomalies. For this same rea-
son, it is doubly frustrating that we are prevented from try-
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Wavelet

Wavlet Analysis

The wavelets are scaled and translated copies (known as
“daughter wavelets”) of a finite-length or fast-decaying
oscillating waveform (known as the “mother wavelet”)
Wavelet transforms have advantages over traditional
Fourier transforms for representing functions that have
discontinuities and sharp peaks
The main difference, with respect to the Fourier transform,
is that wavelets are localized in both time and frequency
whereas the standard Fourier transform is only localized in
frequency
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Wavelet

Wavelet Decomposition

Mother wavelet ψ(t), satisfying the admissibility condition∫
|Ψ(ω)|2

|ω|
dω < ∞

Wavelet basis

{ψm,n(t)}m,n∈Z =
{

a−m/2
0 ψ

(
a−m

0 t − nb0
)}

m,n∈Z

Representation of any finite–energy signal x(t) ∈ L2(R) by
means of its inner products {xm,n}m,n∈Z with the wavelets
{ψm,n(t)}m,n∈Z:

xm,n =

∫
x(t)·ψm,n(t)dt =

∫
x(t)·a−m/2

0 ψ
(
a−m

0 t − nb0
)

dt (8)

Orthonormal dyadic wavelet basis
a0 = 2 and b0 = 1
Stringent constraints on the mother wavelet
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Mother Wavelet

Morlet

C. Callegari Anomaly Detection 141 / 169



Wavelet

Mother Wavelet
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Wavelet

Mother Wavelet

Mexican Hat
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Wavelet

Filter bank implementation of the Wavelet Transform

Two scale difference equation

ψ(t) =
√

2
∑

n

gnφ(2t − n) φ(t) =
√

2
∑

n

hnφ(2t − n)

where
gn = (−1)n−1 h−n−1

Let xxx = (x1, x2, . . .) denote the approximation of a finite–energy
signal x(t)

g

h 2

2g

h 2

2g
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2x
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Wavelet

Wavelet and Edge Detection

An edge in an image is a contour across which the
brightness of the image changes abruptly
In image processing,an edge is often interpreted as one
class of singularities
In a function, singularities can be characterized easily as
discontinuities where the gradient approaches infinity
However, image data is discrete, so edges in an image
often are defined as the local maxima of the gradient
Wavelet transform has been found to be a remarkable tool
to analyze the singularities including the edges and to
detect them effectively
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Wavelet and Edge Detection
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Wavelet

Wavelet and Anomaly Detection

The concept of edge can be easily extended to that of
anomaly in network traffic
Classical approaches look at the time series of specific
kinds of packets inside aggregate traffic
They detect irregular traffic patterns in traffic trace

Wavelet analysis is applied to evaluate the traffic signal filtered
only at certain scales, and a thresholding technique is used to
detect changes
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Wavelet Case Study 1

A case study

A Signal Analysis of Network Traffic Anomalies
Paul Barford, Jeffery Kline, David Plonka and Amos Ron
ACM Internet Measurement Workshop 2002
The Measurement Data:

SNMP and IP flow data
collected at the border router (Juniper M10) of the
University of Wisconsin-Madison campus network
the campus network consists primarily of four IPv4 class B
networks or roughly 256,000 IP addresses of which fewer
than half are utilized
IP connectivity to the commodity Internet and to research
networks via about 15 discrete wide-area transit and
peering links all of which terminate into the aforementioned
router
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Wavelet Case Study 1

SNMP Data

The SNMP data was gathered by MRTG at a five minute
sampling interval which is commonly used by network
operator
The SNMP data consists of the High Capacity interface
statistics, defined by RFC2863, which were polled using
SNMP version 2c
Byte and packet counters for each direction of each
wide-area link, specifically these 64-bit counters:
ifHCInOctets, ifHCOutOctets, ifHCInUcastPkts, and
ifHCOutUcastPkt
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Wavelet Case Study 1

IP Flow Data

The flow data was gathered using flow-tools and was
post-processed using FlowScan
The Juniper M10 router was running JUNOS 5.0R1.4, and
later JUNOS 5.2R1.4, and was configured to perform
“cflowd” flow export with a packet sampling rate of 96
This caused 1 of 96 forwarded packets to be sampled, and
subsequently assembled into flow records similar to those
defined by Cisco’s NetFlow version 5 with similar
packet-sampling-interval and 1 minute flow active-timeout
Data were post-processed, so as to store mean value (over
5 minutes time-bins) of rate and packet dimension
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Wavelet Case Study 1

Anomalies

By manual inspecting the data, 109 anomalies were identified:
41 Network Events
46 Attacks
4 Flash Crowds
18 Measurement Events

Necessity of filtering out the daily and weekly variations
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Wavelet Case Study 1

The Method

Framelet system, i.e. a redundant wavelet system (which
essentially means that r , the number of high-pass filters, is
larger than 1; a simple count shows that, if r > 1, the total
number of wavelet coefficients exceeds the length of the
original signal)
In chosen system, there is one low-pass filter L and three
high-pass filters H1 , H2 , H3
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Wavelet Case Study 1

The analysis platform

Derive from a given signal x (that represents five-minute
average measurements over a 2 months period) three output
signals, as follows

The L(ow frequency)-part of the signal: all the
low-frequency wavelet coefficients from levels 9 and up

should capture patterns and anomalies of very long
duration: several days and up
signal here is very sparse (its number of data elements is
approximately 0.4% of those in the original signal), and
captures weekly patterns in the data quite well
for many different types of Internet data, the L-part of the
signal reveals a very high degree of regularity and
consistency in the traffic, hence can reliably capture
anomalies of long duration

C. Callegari Anomaly Detection 153 / 169



Wavelet Case Study 1

The analysis platform

The M(id frequency)-part of the signal: the wavelets
coefficients from frequency levels 6, 7, 8

has zero-mean
is supposed to capture mainly the daily variations in the
data
data elements number about 3% of those in the original
signal

The H(igh frequency)-part of the signal: obtained by
thresholding the wavelet coefficients in the first 5 frequency
levels

need for thresholding stems from the fact that most of the
data in the H-part consists of small short-term variations,
variations that we think of as “noise”
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Wavelet Case Study 1

Detection of anomalies

Normalize the H- and M-parts to have variance one
Compute the local variability of the (normalized) H- and
M-parts by computing the variance of the data falling within
a moving window of specified size
The length of this moving window should depend on the
duration of the anomalies that we wish to captured

If we denote the duration of the anomaly by t0 and the time
length of the window for the local deviation by t1, we need,
in the ideal situation, to have q = t0/t1 = 1
If the quotient q is too small, the anomaly may be blurred
and lost
If the quotient is too large, we may be overwhelmed by
anomalies that are of very little interest
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Wavelet Case Study 1

Detection of anomalies

Combine the local variability of the H- part and M- part of
the signal using a weighted sum. The result is the
V(ariable)-part of the signal
Apply thresholding to the V-signal. By measuring the peak
height and peak width of the V-signal, one is able to begin
to identify anomalies, their duration, and their relative
intensity
Needed Parameters:

M- window size
H- window size
weights assigned to the M- and H-parts
threshold
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Experimental Results

IN PROCEEDINGS OF ACM SIGCOMM INTERNET MEASUREMENTWORKSHOP 2002 6

sufficient intensity are also detected.
2. Combine the local variability of the H-part and M-part of the
signal using a weighted sum. The result is the V(ariable)-part of
the signal.
3. Apply thresholding to the V-signal. By measuring the peak
height and peak width of the V-signal, one is able to begin to
identify anomalies, their duration, and their relative intensity.
We provide further details of our application of this technique in
Section V.
While this approach to identifying anomalies that occur over

periods of hours appears to be promising, it is only the first step
in a process of automated anomaly detection based on the use of
wavelet coefficients. Our choice of using scale dependent win-
dowing to calculate deviation score is motivated by simplicity.
This approach enabled us to easily quantify the significance of
local events by using the reconstructed signal’s local variability.
In the future, we may find that direct use of combinations of
wavelet and approximation coefficients (or other components)
will be sufficient for accurate automated anomaly detection. To
that end, as future work, we plan to investigate which compo-
nents provide the best descrimination and to employ machine
learning tools and techniques to develop more robust automated
anomaly detectors. This approach will enable us to evaluate
quantitatively which combinations of wavelet (or other) features
provide the best detection capability.

B. The IMAPIT Analysis Environment

The IMAPIT environment we developed for this study has
two significant components: a data archive and a signal analysis
platform. The data archive uses RRDTOOL (mentioned in Sec-
tion III) which provides a flexible database and front-end for our
IP flow and SNMP data. The analysis platform is a framelet sig-
nal analysis and visualization system that enables a wide range
of wavelet systems to be applied to signals.
Signal manipulation and data preparation in IMAPIT analysis

was performed using a modified version of the freely-available
LastWave software package [26]. In addition to wavelet decom-
position, we implemented our deviation score method for expos-
ing signal anomalies. Both flow and SNMP time-series data can
be used as input to compute the deviation score of a signal.
Calculating the deviation score has four parameters: an M-

window size, an H-window size, and the weights assigned to the
M- and H-parts. We used only a single constant set of parameter
values to produce the results in Section V. However, one can
tune IMAPIT’s sensitivity to instantaneous events by modifying
the movingwindow size used in constructing the local deviation;
a smaller window is more sensitive. The weights used on the M-
and H-parts allow one to emphasize events of longer or shorter
duration.
In our analysis, we found most anomalies in our journal had

deviation scores of 2.0 or higher. We consider scores of 2.0 or
higher as “high-confidence”, and those with scores below 1.25
as “low-confidence”. Where deviation scores are plotted in fig-
ures in Section V, we show the score as a grey band clipped
between 1.25 and 2.0 on the vertical axis, as labeled on the right
side. An evaluation of deviation scoring as a means for anomaly
detection can be found in Section VI.

V. RESULTS
We decompose each signal under analysis into three distinct

signals (low/mid/high). As a point of reference, if the signal
under analysis is 1 week long (the period used to evaluate short-
lived anomalies), the H-part is frequency levels 1,2,3; the M-
part is frequency levels 4,5; the L-part is the remainder. If the
signal is 8 weeks long (the period used to evaluate long-lived
anomalies), the M-part is frequency levels 6,7,8; and the L-part
is the remainder.
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Fig. 1. Aggregate byte traffi c from IP flow data for a typical week plus
high/mid/low decomposition.
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Fig. 2. Aggregate SNMP byte traffi c for the same week as Figure 1 plus
high/mid/low decomposition.

A. Characteristics of Ambient Traffic

It is essential to establish a baseline for traffic free of anoma-
lies as a means for calibrating our results. Many studies de-
scribe the essential features of network traffic (e.g. [4]) includ-
ing the standard daily and weekly cycles. Figure 1 shows the
byte counts of inbound traffic to campus from the commodity
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sufficient intensity are also detected.
2. Combine the local variability of the H-part and M-part of the
signal using a weighted sum. The result is the V(ariable)-part of
the signal.
3. Apply thresholding to the V-signal. By measuring the peak
height and peak width of the V-signal, one is able to begin to
identify anomalies, their duration, and their relative intensity.
We provide further details of our application of this technique in
Section V.
While this approach to identifying anomalies that occur over

periods of hours appears to be promising, it is only the first step
in a process of automated anomaly detection based on the use of
wavelet coefficients. Our choice of using scale dependent win-
dowing to calculate deviation score is motivated by simplicity.
This approach enabled us to easily quantify the significance of
local events by using the reconstructed signal’s local variability.
In the future, we may find that direct use of combinations of
wavelet and approximation coefficients (or other components)
will be sufficient for accurate automated anomaly detection. To
that end, as future work, we plan to investigate which compo-
nents provide the best descrimination and to employ machine
learning tools and techniques to develop more robust automated
anomaly detectors. This approach will enable us to evaluate
quantitatively which combinations of wavelet (or other) features
provide the best detection capability.

B. The IMAPIT Analysis Environment

The IMAPIT environment we developed for this study has
two significant components: a data archive and a signal analysis
platform. The data archive uses RRDTOOL (mentioned in Sec-
tion III) which provides a flexible database and front-end for our
IP flow and SNMP data. The analysis platform is a framelet sig-
nal analysis and visualization system that enables a wide range
of wavelet systems to be applied to signals.
Signal manipulation and data preparation in IMAPIT analysis

was performed using a modified version of the freely-available
LastWave software package [26]. In addition to wavelet decom-
position, we implemented our deviation score method for expos-
ing signal anomalies. Both flow and SNMP time-series data can
be used as input to compute the deviation score of a signal.
Calculating the deviation score has four parameters: an M-

window size, an H-window size, and the weights assigned to the
M- and H-parts. We used only a single constant set of parameter
values to produce the results in Section V. However, one can
tune IMAPIT’s sensitivity to instantaneous events by modifying
the movingwindow size used in constructing the local deviation;
a smaller window is more sensitive. The weights used on the M-
and H-parts allow one to emphasize events of longer or shorter
duration.
In our analysis, we found most anomalies in our journal had

deviation scores of 2.0 or higher. We consider scores of 2.0 or
higher as “high-confidence”, and those with scores below 1.25
as “low-confidence”. Where deviation scores are plotted in fig-
ures in Section V, we show the score as a grey band clipped
between 1.25 and 2.0 on the vertical axis, as labeled on the right
side. An evaluation of deviation scoring as a means for anomaly
detection can be found in Section VI.

V. RESULTS
We decompose each signal under analysis into three distinct

signals (low/mid/high). As a point of reference, if the signal
under analysis is 1 week long (the period used to evaluate short-
lived anomalies), the H-part is frequency levels 1,2,3; the M-
part is frequency levels 4,5; the L-part is the remainder. If the
signal is 8 weeks long (the period used to evaluate long-lived
anomalies), the M-part is frequency levels 6,7,8; and the L-part
is the remainder.
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high/mid/low decomposition.

A. Characteristics of Ambient Traffic

It is essential to establish a baseline for traffic free of anoma-
lies as a means for calibrating our results. Many studies de-
scribe the essential features of network traffic (e.g. [4]) includ-
ing the standard daily and weekly cycles. Figure 1 shows the
byte counts of inbound traffic to campus from the commodity
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Internet Service Provider during a typical week. The figure also
shows the wavelet decomposition of the signal into high, mid,
and low-band components corresponding to the H-, M-, and L-
parts discussed in Section IV. The regular daily component of
the signal is very clear in the low band4.
In Figure 2, we show the byte traffic for the same week at

the same level of aggregation as measured by SNMP. In this
case traffic was measured by utilizing high-capacity SNMP in-
terface octet counters rather than by selecting the specific BGP
Autonomous System number from the exported flow records.
The decompositions in Figures 1 and 2 are nearly indistinguish-
able. The primary difference is slightly more high-frequency
“jitter” in the flow-export-based signal5.

B. Characteristics of Flash Crowds

The first step in our analysis of anomalies is to focus on flash
crowd events. Our choice of investigating flash crowds first is
due to their long lived features which should be exposed by the
mid and low-band filters. This suggests that analysis of either
SNMP or flow-based data is suitable, however we focus on flow-
based data. Figure 3 shows the decomposition of eight weeks
of outbound traffic from one of the campus’ class-B networks
which contains a popular ftp mirror server for Linux releases.
During these weeks, two releases of popular Linux distributions
occurred, resulting in heavy use of the campus mirror server. In
this and subsequent figures, grey boxes were added by hand to
focus the reader’s attention on the particular anomaly (the posi-
tion of each box was determined by simple visual inspection).
Attention should again focus on the low-band signal. The low-
band signal highlights each event clearly as well as the long-
lived aspect of the second event.
Another way to consider the effects of flash crowds is from

the perspective of their impact on the typical sizes of packets.
The intuition here is that large data/software releases should re-
sult in an increase in average packet size for outbound HTTP
traffic and therefore packet size may be an effective means for
exposing flash crowds. Figure 4 shows eight weeks of outbound
HTTP traffic and highlights another flash crowd anomaly from
our data set. This anomaly was the result of network packet
traces being made available on a campus web server. Curiously,
for unrelated reasons, the server for this data set had its kernel
customized to use a TCP Maximum Segment Size of 512. Both
the mid-band and low-band signals in this figure show that the
outbound HTTP packets from this server were, in fact, able to
redefine the campus’ average HTTP packet size. It is also inter-
esting to note that the packet size signal becomes more stable
(the signal has fewer artifacts) during this flash crowd event.
This is particularly visible in the mid-band. Since flash crowds
typically involve a single application, it seems likely that that
application’s packet size “profile” temporarily dominates.

4We could easily expose the weekly component of the signal using higher
aggregation fi lters, however weekly behavior is not important for the groups of
anomalies we consider in this study.

5We will employ formal methods to quantify the difference between SNMP
and flow signals and their decompositions in future work.
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Fig. 3. Baseline signal of byte traffi c for a one week on either side of a flash
crowd anomaly caused by a software release plus high/mid/low decomposi-
tion.
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Fig. 4. Baseline signal of average HTTP packet sizes (bytes) for four weeks on
either side of a flash crowd anomaly plus mid/low decomposition.

C. Characteristics of Short-term Anomalies

Short-term anomalies comprise attacks, network outages, and
measurement anomalies. The coarse-grained (5 minute inter-
vals) nature of our measurements complicates discrimination
between these categories of anomalies, thus we consider them
as a group. We evaluated 105 short-term anomalies using dif-
ferent combinations of data to determine how best expose their
features (we present analysis of several examples of short-term
anomalies to highlight their general features). In contrast to flash
crowds, short-term anomaly features should be best exposed by
mid-band and high-band filters which isolate short-timescale as-
pects of signals.
Figure 5 shows a decomposition of TCP flow counts which

exposes two inbound denial-of-service (DoS) attacks that oc-
curred during the same one week period. These two attacks
were floods of 40-byte TCP SYN packets destined for the same
campus host. Because the flood packets had dynamic source ad-
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Internet Service Provider during a typical week. The figure also
shows the wavelet decomposition of the signal into high, mid,
and low-band components corresponding to the H-, M-, and L-
parts discussed in Section IV. The regular daily component of
the signal is very clear in the low band4.
In Figure 2, we show the byte traffic for the same week at

the same level of aggregation as measured by SNMP. In this
case traffic was measured by utilizing high-capacity SNMP in-
terface octet counters rather than by selecting the specific BGP
Autonomous System number from the exported flow records.
The decompositions in Figures 1 and 2 are nearly indistinguish-
able. The primary difference is slightly more high-frequency
“jitter” in the flow-export-based signal5.

B. Characteristics of Flash Crowds

The first step in our analysis of anomalies is to focus on flash
crowd events. Our choice of investigating flash crowds first is
due to their long lived features which should be exposed by the
mid and low-band filters. This suggests that analysis of either
SNMP or flow-based data is suitable, however we focus on flow-
based data. Figure 3 shows the decomposition of eight weeks
of outbound traffic from one of the campus’ class-B networks
which contains a popular ftp mirror server for Linux releases.
During these weeks, two releases of popular Linux distributions
occurred, resulting in heavy use of the campus mirror server. In
this and subsequent figures, grey boxes were added by hand to
focus the reader’s attention on the particular anomaly (the posi-
tion of each box was determined by simple visual inspection).
Attention should again focus on the low-band signal. The low-
band signal highlights each event clearly as well as the long-
lived aspect of the second event.
Another way to consider the effects of flash crowds is from

the perspective of their impact on the typical sizes of packets.
The intuition here is that large data/software releases should re-
sult in an increase in average packet size for outbound HTTP
traffic and therefore packet size may be an effective means for
exposing flash crowds. Figure 4 shows eight weeks of outbound
HTTP traffic and highlights another flash crowd anomaly from
our data set. This anomaly was the result of network packet
traces being made available on a campus web server. Curiously,
for unrelated reasons, the server for this data set had its kernel
customized to use a TCP Maximum Segment Size of 512. Both
the mid-band and low-band signals in this figure show that the
outbound HTTP packets from this server were, in fact, able to
redefine the campus’ average HTTP packet size. It is also inter-
esting to note that the packet size signal becomes more stable
(the signal has fewer artifacts) during this flash crowd event.
This is particularly visible in the mid-band. Since flash crowds
typically involve a single application, it seems likely that that
application’s packet size “profile” temporarily dominates.

4We could easily expose the weekly component of the signal using higher
aggregation fi lters, however weekly behavior is not important for the groups of
anomalies we consider in this study.

5We will employ formal methods to quantify the difference between SNMP
and flow signals and their decompositions in future work.
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C. Characteristics of Short-term Anomalies

Short-term anomalies comprise attacks, network outages, and
measurement anomalies. The coarse-grained (5 minute inter-
vals) nature of our measurements complicates discrimination
between these categories of anomalies, thus we consider them
as a group. We evaluated 105 short-term anomalies using dif-
ferent combinations of data to determine how best expose their
features (we present analysis of several examples of short-term
anomalies to highlight their general features). In contrast to flash
crowds, short-term anomaly features should be best exposed by
mid-band and high-band filters which isolate short-timescale as-
pects of signals.
Figure 5 shows a decomposition of TCP flow counts which

exposes two inbound denial-of-service (DoS) attacks that oc-
curred during the same one week period. These two attacks
were floods of 40-byte TCP SYN packets destined for the same
campus host. Because the flood packets had dynamic source ad-
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dresses and TCP port numbers, the flood was reported as many
“degenerate” flows, having only one packet per flow. As pre-
dicted, the decomposition easily isolates the anomaly signal in
the high and mid bands. By separating these signals from the
longer time-scale behavior, we have new signals which may be
amenable to detection by thresholding.
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Fig. 5. Baseline signal of packet flows for a one week period highlighting two
short-lived DoS attack anomalies plus high/mid/low decomposition.
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Fig. 6. Baseline signal of byte traffi c from flow data for a one week period show-
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tion.

Another type of short-term anomaly is shown in Figure 6.
This figure shows a periodic sequence of three measurement
anomalies observed over a three day period. This was found
to be a host in the outside world performing nightly backups
to a campus backup server. The large volume of traffic each
day was due to misconfiguration of the client backup software.
As in the prior example, the decomposition easily isolates the
anomaly signal in the high and mid bands while the low band
is not affected by the anomaly. However if this anomaly had
been intended behavior, accounting for it in high and mid bands
would require additional filters in our analysis platform.

D. A Discriminator for Short-term Anomalies

One of the objectives of this work is to provide a basis for
automating anomaly detection. It is important for any anomaly
detection mechanism to minimize false positives and false neg-
atives. Our analysis led to the development of the “devia-
tion score” discrimination function for short-term anomalies de-
scribed in Section IV.
Figure 7 shows how deviation scores can be used to highlight

a series of short-term anomalies. The figure shows inbound TCP
packet rate during a week plus three anomalies that might other-
wise be difficult to discern from the baseline signal. Two of the
anomalies are DoS floods that are easily detected and exposed
automatically by their deviation scores and are marked by the
first and second grey bands. Note, the bands are actually score
values as shown by the scale on the right of the figure (the left-
most score does not quite reach 2). The third band marks an
measurement anomaly unrelated to the DoS attacks.
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Fig. 7. Deviation analysis exposing two DoS attacks and one measurement
anomaly in for a one week period in packet count data.

In Figure 8, we present a deviation analysis during a week
containing a network outage. This outage affected about one
fourth of the campus’ IPv4 address space, and therefore caused
an overall decrease in traffic. For each traffic measurement met-
ric (packets, bytes, flows), inbound or outbound, our deviation
scoring identified and marked the anomaly. This suggests that
it is feasible to use a “rules based” approach or weighted aver-
age to determine the type or scope of the anomaly based on the
accumulated impact of a set of deviation scores.

E. Exposing Anomalies in Aggregate Signals

An important issue in detecting traffic anomalies is the rela-
tionship between the strength of an anomaly’s signal in a set of
aggregated traffic. This is most easily considered with respect
to the point at which measurement data is collected in a net-
work. Intuition would say that an anomaly measured close to its
source should be very evident while the same anomaly would
be less evident if its signal were aggregated with a large amount
of other traffic. We investigate this issue by isolating a specific
subnet in which a system is the victim of a DoS attack.
Figure 9 shows the deviation analysis of two inbound DoS

floods within the aggregate traffic of the victims 254 host subnet
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dresses and TCP port numbers, the flood was reported as many
“degenerate” flows, having only one packet per flow. As pre-
dicted, the decomposition easily isolates the anomaly signal in
the high and mid bands. By separating these signals from the
longer time-scale behavior, we have new signals which may be
amenable to detection by thresholding.
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Fig. 6. Baseline signal of byte traffi c from flow data for a one week period show-
ing three short-lived measurement anomalies plus high/mid/low decomposi-
tion.

Another type of short-term anomaly is shown in Figure 6.
This figure shows a periodic sequence of three measurement
anomalies observed over a three day period. This was found
to be a host in the outside world performing nightly backups
to a campus backup server. The large volume of traffic each
day was due to misconfiguration of the client backup software.
As in the prior example, the decomposition easily isolates the
anomaly signal in the high and mid bands while the low band
is not affected by the anomaly. However if this anomaly had
been intended behavior, accounting for it in high and mid bands
would require additional filters in our analysis platform.

D. A Discriminator for Short-term Anomalies

One of the objectives of this work is to provide a basis for
automating anomaly detection. It is important for any anomaly
detection mechanism to minimize false positives and false neg-
atives. Our analysis led to the development of the “devia-
tion score” discrimination function for short-term anomalies de-
scribed in Section IV.
Figure 7 shows how deviation scores can be used to highlight

a series of short-term anomalies. The figure shows inbound TCP
packet rate during a week plus three anomalies that might other-
wise be difficult to discern from the baseline signal. Two of the
anomalies are DoS floods that are easily detected and exposed
automatically by their deviation scores and are marked by the
first and second grey bands. Note, the bands are actually score
values as shown by the scale on the right of the figure (the left-
most score does not quite reach 2). The third band marks an
measurement anomaly unrelated to the DoS attacks.
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Fig. 7. Deviation analysis exposing two DoS attacks and one measurement
anomaly in for a one week period in packet count data.

In Figure 8, we present a deviation analysis during a week
containing a network outage. This outage affected about one
fourth of the campus’ IPv4 address space, and therefore caused
an overall decrease in traffic. For each traffic measurement met-
ric (packets, bytes, flows), inbound or outbound, our deviation
scoring identified and marked the anomaly. This suggests that
it is feasible to use a “rules based” approach or weighted aver-
age to determine the type or scope of the anomaly based on the
accumulated impact of a set of deviation scores.

E. Exposing Anomalies in Aggregate Signals

An important issue in detecting traffic anomalies is the rela-
tionship between the strength of an anomaly’s signal in a set of
aggregated traffic. This is most easily considered with respect
to the point at which measurement data is collected in a net-
work. Intuition would say that an anomaly measured close to its
source should be very evident while the same anomaly would
be less evident if its signal were aggregated with a large amount
of other traffic. We investigate this issue by isolating a specific
subnet in which a system is the victim of a DoS attack.
Figure 9 shows the deviation analysis of two inbound DoS

floods within the aggregate traffic of the victims 254 host subnet
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dresses and TCP port numbers, the flood was reported as many
“degenerate” flows, having only one packet per flow. As pre-
dicted, the decomposition easily isolates the anomaly signal in
the high and mid bands. By separating these signals from the
longer time-scale behavior, we have new signals which may be
amenable to detection by thresholding.
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Fig. 6. Baseline signal of byte traffi c from flow data for a one week period show-
ing three short-lived measurement anomalies plus high/mid/low decomposi-
tion.

Another type of short-term anomaly is shown in Figure 6.
This figure shows a periodic sequence of three measurement
anomalies observed over a three day period. This was found
to be a host in the outside world performing nightly backups
to a campus backup server. The large volume of traffic each
day was due to misconfiguration of the client backup software.
As in the prior example, the decomposition easily isolates the
anomaly signal in the high and mid bands while the low band
is not affected by the anomaly. However if this anomaly had
been intended behavior, accounting for it in high and mid bands
would require additional filters in our analysis platform.

D. A Discriminator for Short-term Anomalies

One of the objectives of this work is to provide a basis for
automating anomaly detection. It is important for any anomaly
detection mechanism to minimize false positives and false neg-
atives. Our analysis led to the development of the “devia-
tion score” discrimination function for short-term anomalies de-
scribed in Section IV.
Figure 7 shows how deviation scores can be used to highlight

a series of short-term anomalies. The figure shows inbound TCP
packet rate during a week plus three anomalies that might other-
wise be difficult to discern from the baseline signal. Two of the
anomalies are DoS floods that are easily detected and exposed
automatically by their deviation scores and are marked by the
first and second grey bands. Note, the bands are actually score
values as shown by the scale on the right of the figure (the left-
most score does not quite reach 2). The third band marks an
measurement anomaly unrelated to the DoS attacks.
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Fig. 7. Deviation analysis exposing two DoS attacks and one measurement
anomaly in for a one week period in packet count data.

In Figure 8, we present a deviation analysis during a week
containing a network outage. This outage affected about one
fourth of the campus’ IPv4 address space, and therefore caused
an overall decrease in traffic. For each traffic measurement met-
ric (packets, bytes, flows), inbound or outbound, our deviation
scoring identified and marked the anomaly. This suggests that
it is feasible to use a “rules based” approach or weighted aver-
age to determine the type or scope of the anomaly based on the
accumulated impact of a set of deviation scores.

E. Exposing Anomalies in Aggregate Signals

An important issue in detecting traffic anomalies is the rela-
tionship between the strength of an anomaly’s signal in a set of
aggregated traffic. This is most easily considered with respect
to the point at which measurement data is collected in a net-
work. Intuition would say that an anomaly measured close to its
source should be very evident while the same anomaly would
be less evident if its signal were aggregated with a large amount
of other traffic. We investigate this issue by isolating a specific
subnet in which a system is the victim of a DoS attack.
Figure 9 shows the deviation analysis of two inbound DoS

floods within the aggregate traffic of the victims 254 host subnet
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Fig. 8. Deviation analysis exposing a network outage of one (of four) Class-B networks.
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Fig. 9. Deviation analysis of two DoS events as seen in the 254 host subnet containing the victim of the attack (top) and in the aggregate traffi c of the entire campus.
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and the aggregate traffic of the campus’ four Class-B networks.
The top set of graphs in this figure show that deviation scores
easily highlight the extreme nature of DoS floods in inbound
traffic within the subnet, and that they even highlight the much
less evident outbound traffic anomaly. The bottom set of graphs
show again that deviation scores highlight the same anomalies
(as well as a number of others).

F. Hidden Anomalies

Through the application of our methods, we were able to iden-
tify a number of “hidden” anomalies in our data sets. These are
anomalies that had not been previously identified by the cam-
pus network engineers. The majority of these were DoS attacks
most of which could be identified by careful visual inspection.
One hidden anomaly of interest is shown in Figure 10. This

figure shows outbound traffic from one of the campus’ class-
B networks during a four week period. The duration of this
anomaly prevented its detection via deviation score. Decom-
position enabled us to identify an anomaly that had previously
gone unnoticed and was not easily seen visually. The anomaly
is most visible following December 18th in the low-band graph
where traffic remained uncharacteristically high across two sub-
sequent days. Follow-up investigation using our repository of
flow records showed this anomaly to have been due to of net-
work abuse in which four campus hosts had their security com-
promised and were being remotely operated as peer-to-peer file
servers.
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Fig. 10. Example of three-band analysis exposing a multi-day network abuse
anomaly.

VI. DEVIATION SCORE EVALUATION
We evaluated the results of our deviation scoring method of

anomaly detection in two ways. First, we selected a set of
anomalies logged in the network operator journal as a baseline
and evaluated deviation score detection capability. Secondly, we
used the same baseline set of anomalies to evaluate the effective-
ness of an alternative detection technique based on Holt-Winters
Forecasting [12] as a comparison to deviation scoring. We were
limited in the extent to which we could evaluate either detection
method since the baseline set of anomalies used in this analy-
sis is unlikely to be complete. Therefore, we did not attempt to
determine which method reported more false-positives.

TABLE II
COMPARISON OF ANOMALY DETECTION METHODS.

Total Candidate Candidates detected Candidates detected
Anomalies Evaluated by Deviation Score by Holt-Winters

39 38 37

In each case we were somewhat tolerant of discrepancies be-
tween the anomaly timestamps in the journal’s log entries and
the times at which the automated methods reported anomalous
network traffic. Specifically, we allowed a discrepancy of as
much as 1.5 hours since both automated techniques sometimes
shift the report significantly from the time of the event’s on-
set. The respective identification of anomalies from our evalu-
ation set is summarized in Table II. As can be seen, both tech-
niques performed well in that their false-negative reports for the
39 anomalies in the candidate set were very low.

A. Deviation Score vs. Logged Anomalies

We selected 39 events from the network operator’s log of
anomalies. This subset of events were those for which a suitable
amount of evidence had been gathered to label them as “high
confidence” anomalies. This evidence gathering was a tedious
effort often involving the examination of individual flow records
to identify the specific IP header values for the packets that com-
prised the anomaly.
Of those 39 anomalies selected as a baseline for evaluation,

deviation score analysis detected 38 of them with a significantly
confident score of 1.7 or higher. For the single anomaly which
wasn’t detected by our method, its deviation score was substan-
tial but less than 1.7. Visual inspection of the plot of this signal
showed that this was due to a more prominent anomaly which
was detected earlier in the week, which suppressed the magni-
tude of the undetected anomaly’s score. This is a side-effect of
the normalization within the context of the week-long window
we used in our analysis method.

B. Holt-Winters Forecasting vs. Logged Anomalies

To further evaluate the deviation score, we compared its
anomaly detection results with the Holt-Winters Forecasting and
reporting technique that has been implemented in the freely-
available development source code of RRDTOOL version 1.1.
Holt-Winters Forecasting is a algorithm that builds upon expo-
nential smoothing which is described in [27]. The specific im-
plementation of Holt-Winters Forecasting is described in [12].
We selected this Holt-Winters method for comparison be-

cause it is perhaps the most sophisticated technique that is be-
ing used currently by network operators (although not yet by
many!). The most common techniques in use employ simple
site-specific rules-based thresholding. We summarily rejected
those simple techniques because their rules and magic numbers
for thresholding are often not portable beyond the local network
and because of their general inability to handle seasonal effects
such as daily cycles in signal amplitude. Both deviation score
and Holt-Winters analysis can be configured to take a seasonal
period into consideration, and both are being proposed as possi-
ble alternatives to analysis by visual inspection of network traf-
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