

ICWMC Tutorial - Valencia - Sept 2010

Collaborative Radio for 5G Mobile and Wireless Communications

represented by: Josef Noll, Professor University of Oslo/UNIK josef@unik.no on behalf of the Center for Wireless Innovation Norway

CWI Norway (http://cwin.no)

UNIK and the Internet

- Research and Education at Kjeller
- Close relation to FFI, IFE, NILU,...
- Prof. from Univ. of Trondheim and Oslo

 The building where the Internet (Arpanet) came to Europe in June 1973

Source: Wikipedia

1971 (at which point 23 hosts, at universities and government research centers, were connected to the ARPANET); 29 by August, 1972, and 40 by September, 1973.

At that point, two satellite links, across the Pacific and Atlantic Oceans to Hawaii and Norway (NORSAR) had been added to the network. From Norway, a terrestrial circuit added an IMP in London to the growing network.

5G communications

Center for Wireless Innovation

A facilitator for industry and seven research institutions to form strategic partnerships in wireless R&D

Content

- Introduction
- Generation aspects of mobile and wireless communications
- Drivers for 5G communications
- Focus: Radio coverage
- Focus: Seamless authentication
- Business aspects
- Conclusions

4

Content

- Introduction
- Generation aspects of mobile and wireless communications
 - Applications for 5G
 - Radio, Capacity and Coverage
 - Network aspects
- Drivers for 5G communications
- Focus: Radio coverage
- Focus: Seamless authentication
- Business aspects
- Conclusions

"Let the user own his own network, and your revenue as a Telecom operator will increase"

7

Postulation

"Let the user own his own network, and your revenue as a Telecom operator will increase"

Stoneage:

- A phone is related to a household
- The PC/Laptop belongs to your company
- Your Mobile Phone is owned by your company

still remaining

- The Network is owned by an operator but
- An operator can't charge for mobile costs

🖸 NTNU

UNIVERSITETE7

HØGSKOLEN

SMS

versus

video

Universitetet

i Stavanger

September 2010, Josef Noll

The Requirements Of Changing Industry - Services

Services will grow in multiplicity, diversity and richness of content

✓New services with the Internet at the heart the services - Internet a network with extreme mobility, ubiquity, personalization, adaptivity, video addiction and surprising applications as yet unimagined

✓ Ubiquitous ultra broadband communications

✓ New ecosystem & new players and value chain, New business and revenue models

✓ Digital Connected world: digital Infrastructure & digital content and in particular **Digital Home** continues to grow

✓ More powerful and enabled devices - Changes on the shape, size, capability and price

Users will grow in importance

- ✓ Customer delight is absolutely essential
- ✓Adopting new habits (e.g. social media)
- ✓More demanding on the quality, interactivity, personalisation, sharing, immersive content experience, virtualization YET lower price

Simplicity for users and shift of complexity to networks

Beyond 4G - the heterogeneous network

Collaborative Radio - ICWMC Tutorial - Sep 2010 - Josef Noll

Beyond 4G - the heterogeneous network

Collaborative Radio - ICWMC Tutorial - Sep 2010 - Josef Noll

Development of cellular systems

🖸 NTNU

Generation	System	Comments
1G	NMT/ AMPS	•Analog voice •FDMA
2G	GSM IS-95 PDC	 Digital modulation/voice centric Advance security and roaming TDMA/ narrowband CDMA
3G	UMTS/WCDMA CDMA2000 TD-SCDMA	 IMT-2000 introduces global standard Global roaming and wideband CDMA
4G	3GPP LTE Mobile WiMAX 3GPP2 UMB	 Future Mobile Systems (IMT-A) 100 Mbps for (mobile usage) and 1 Gbps for (nomadic/stationary usage)

UNIVERSITETET

I OSLO

11

HØGSKOLEN I BERGEN September 2010, Josef Noll

Key features of IMT-Advanced

- a high degree of commonality of functionality worldwide while retaining the flexibility to support a wide range of services and applications in a cost efficient manner;
- compatibility of services within IMT and with fixed networks;
- capability of interworking with other radio access systems;
- high-quality mobile services;
- user equipment suitable for worldwide use;
- user-friendly applications, services and equipment;
- worldwide roaming capability;
- enhanced peak data rates to support advanced services and applications (100 Mbit/s for high and 1 Gbit/s for low mobility were established as targets for research).

Future Mobile systems

14

- Increased capacity
 - higher bandwidth (GSM: 200 kHz; UMTS 3.84 MHz, LTE 20 MHz)
 - Advanced modulation and coding: QPSK, M-QAM
 - Multi-antenna technology: MIMO
- Better spectral efficiency
 - OFDM/OFDMA (orthogonality reduces bandwidth)
- Lower latency
 - complete IP-architecture
- Multimedia traffic
 - enhanced for quality of service (QoS)

3GPP LTE

IEEE 802.16 (WiMAX)

Release 99(2000)	UMTS/CDMA	802.16(2001)	LOS (10 – 66 GHz)
Release 5(2002)	HSDPA	802.16a(2003)	Support for 2 – 11 GHz
Release 6(2005)	HSUPA		
Release 7(2007)	DL MIMO, IMS(IP Multimedia Subsystem), better real-time support (VoIP, games, streaming)	802.16d(2004) enhanced 802.16a	Basic standard for fixed WiMAX
		802.16e-2005 (2005)	Support for mobility and asymmetric link
		802.16™-2009	Combined standard for fixed and mobile WiMAX
Release 8(2008)	Long Term Evolution (LTE)		
		802.16m (3Oct 2009)	802.16 submission as IMT-A RIT-candidate for
Release (2010?)	LTE-Advanced		

Universitetet i Stavanger

PÅ KJELLER

LTE versus Mobile WiMAX

Parameter	3GPP LTE	Mobile WiMAX
Channel bandwidth [MHz]	1.4, 3, 5, 10, 15 og 20	5, 7, 8.75, 10 og 20 (802.16m)
DL access method	OFDMA	OFDMA
UL access method	SC-FDMA	OFDMA
Duplex	FDD og TDD	TDD, (FDD inkludert i 802.16m)
Subcarrier hopping	Ja (per time slot)	Ja
Subcarrier placement	localised, distributed	localised, distributed
Data modulation	QPSK, 16-QAM og 64-QAM	QPSK, 16-QAM og 64-QAM (optional for UL)
FFT size	128, 256, 512, 1024, 1536, 2048	512, 1024, 1024, 1024 og 2048
channel coding	CC, CTC (R=1/3)	CC, CTC (R=1/2), BTC (optional)
Subcarrier spacing [kHz]	15 , 7.5 (only for extended CP)	10.94 (for 5, 10 and 20 MHz BW)
Multi antenna technology	Multi-layer precoded space multiplexing	space multiplexing, STC, Beam-forming
Top data rates: DL/UL [Mbps] (SISO)	86.4 / 55.5 (1 lag)	64.8 / 28.2 (measured values for 20 MHz og 64QAM)

UNIVERSITETET I OSLO

NTNU

KJELLER Universitetet HØGSKOLEN I BERGEN September 2010, Josef Noll i Stavanger

LTE radio frame structure

- Two LTE radio frame structures
 - Type 1, FDD
 - Type 2, TDD
- Radio frame length: 10 ms
- Subframe length: 1 ms
- Length of one time slot: 0.5 ms
- ** Dw-/UpPTS → Downlink-/ Uplink Pilot Time Slot,
- $GT \rightarrow Guard Time$ (switching points between DL Tx and UL Tx)

Universitetet

i Stavanger

mandag 20. september 2010

18

LTE time slot and resource block

19

LTE symbol with normal cyclic prefix (CP) in one time slot:

bandwidth [MHz]	1.4	3	5	10	15	20
FFT	128	256	512	1024	1536	2048
symbol/time slot	7					
Δf	15 kHz					
# subcarriers	72	180	300	600	900	1200
# PRB	6	15	25	50	75	100

5G business entities

The Requirements Of Changing Industry - Networks

- Blurring boundaries convergence of telecommunication, information, broadcasting and media and publishing technologies
- Change of vertical NWs for single service to horizontal NWs for multi service
- ✓Hyper connectivity (P2p, M2M)

Capacity

Map

Coverage

Map

21

- ✓New network deployment options
- ✓Walled Garden will change to Open Networks
- ✓ High capacity and pipes with intelligent plumbing that could incorporate sophisticated quality control capability
- ✓ Self managed and automated networks
- Communication fundamentally delivered through SW on standards / generic HW

Quality

Map

mandag 20. september 2010

Diverged Traffic & Revenue Growth

- ✓ Global ubiquitous Internet-based solution with hyper Connectivity
- ✓ Hundred-fold increase in network flow brought by mass terminals and mass digital content, and the thousand-fold, increase in traffic flow on mobile networks
- \checkmark Users are spending more time on the phone & internet
- \checkmark Average household spending on communication falls
- Consumer pay less while getting better value -> they pay ~30% less than 5 years ago
- ✓ Significant growth in traffic while slow in revenue
 ✓ User experience at risk
- \checkmark What do we do with a surging traffic
 - Limit/control it?
 - Turn it to revenue?
 - Bring the cost of it down?

Cost reduction is a very critical aspect of the future networks. Telecom seems to be the only sector delivering price decrease

mandag 20. september 2010

22

IntroductionGeneration aspects of mobile and wireless communications

- Drivers for 5G communications
 - Device aspects
 - Form factor
 - Diversity
 - Power
 - Network authentication
- Focus: Radio coverage
- Focus: Seamless authentication
- Business aspects
- Conclusions

MOVINION B4G - the service aspect

- Can mobile operators provide sufficient bandwidth at home/in the office?
- Service experience from mobile broadband/LTE roll-out
- 70-80% of all mobile broadband users are inside a building
- fixed services like TV, video, streaming are more dominant
- USA today: more data/apps traffic than voice traffic

- iPad, set-top box, TV, projector
- iPhone (AppStore), Android: Widgets, Applets
- streaming: YouTube, Spotify, mobile-TV,

Revenue does not relate to bandwidth

Collaborative Radio - ICWMC Tutorial - Sep 2010 - Josef Noll

Mobile Market

- Mobile workforce: 40-70
 % of a group in different locations
- 90 % of the employees away from HQ

- 2006:
 - 1020 million mobiles
 - 209 million PCs
- 4 Billion people with mobile in 2009
- Q4/2006: > 30 % smartphones in Norway

Collaborative Radio - ICWMC Tutorial - Sep 2010 - Josef Noll

5G business entities

Content

- Introduction
- Generation aspects of mobile and wireless communications
- Drivers for 5G communications
- Focus: Radio coverage
 - Interference in Beyond 3G systems (HSPA, LTE, 5G)
 - Radio dilemma: range, capacity, frequency
 - Network capacity and cell capacity
 - Interference limited coverage
 - Serving indoor users
 - Femtocells
- Focus: Seamless authentication
- Business aspects
- Conclusions

5G access - radio dilemma

🖸 NTN

UNIVERSITETET

HØGSKOLEN I BE

RGEN

September 2010, Josef Noll

I OSLO

Authentication and Access provider

- Access challenge: More bandwidth with less revenue
- The radio dilemma
 - frequency \uparrow , bandwidth \uparrow
 - frequency \uparrow , range ↓

_	outdoor	te indoor

frequency [MHz]	Capacity increase	Attenuati on (dB)	Capacity increase	
900	100 %	12	100 %	
1800	149 %	13	91 %	
2100	183 %	17	40 %	
2600	209 %	20	20 %	

mandag 20. september 2010

Universitetet

i Stavanger

5G access - business considerations

- The radio dilemma

 outdoor to indoor
- The business dilemma
- 5G access is expensive (range)
- changing access means loosing

5G aspects

- Bandwidth requirements come from other form factors (notebook, portable 3D cinema)
- Assuming standardisation of application language
 - convertable widgets
 - web technologies (SAWSDL, html7)
- Seamless authentication
 - "My driver license on the information road"
- "Indoor coverage can't be satisfied through outdoor base stations"
 - cooperating networks
- Variability of wireless sensors, devices, and systems
 - information on communication capabilities
 - power consumption and interference

mandag 20. september 2010

Telenor expectations

• Norwegian Post/Tele Reguator has opened for "cognitive radio" (April 2010)

Universitetet i Stavanger

35

Real network usage

Indoor dilemma

- Out ---> Indoor
 38% of users > 20 Mbit/s
 32% of users 7...20 Mbit/s
 30% of users 1.2...7 Mbit/s
 32%
 - Indoor coverage
 - 70-80% of tra<mark>ffic from</mark> indoor
 - decreased signal quality
 - users experience less bandwidth than promised
 - 35% of users out of service coverage
 - Operators has up to 30% reduced cell capacity

70% indoor users means 30% reduction of cell capacity, and only 45% of satisfied users

Alt 1: Over-dimensioning

- 10 dB increased Tx -> 70% increased coverage
 - cell overlap causes interference
- total network capacity is reduced

Over-dimensioing costs too much network capacity

Collaborative Radio - ICWMC Tutorial - Sep 2010 - Josef Noll

Alt 2: Operator owned Femtocells

16% 17% 32% 35% service availability without femtocells

- Operator-owned femtocell
- operator-owned
 - full QoS control
 - enable hand-over
- equipment
- transmission
- installation and deployment cost
- site acquisition or rental cost
- operation and maintenance cost
- Customer perspective
- DnBNOR, FFI.... provide only "Telenor" coverage?
- WLAN hotspot: "freedom to select"

Femtocells: from Coverage to Capacity to Quality Network

M

Radio, Femtocell

protitability?

customer-owned femtocells?

Generation aspects of mobile and wireless communications

Introduction

Content

- Drivers for 5G communications
- Focus: Radio coverage
- Focus: Seamless authentication
 - Seamless Network access
 - Mobility
 - Authentication mechanisms
 - Future SIM as authenticator
- Business aspects
- Conclusions

42

Soomloss Jogin through

Seamless login

Content

CWI

- Introduction
- Generation aspects of mobile and wireless communications
- Drivers for 5G communications
- Focus: Radio coverage
- Focus: Seamless authentication
- Business aspects
 - Collaborative approach,
 - Near Field Communication (NFC) as an example
- Conclusions

"Let the user own his own network, and your revenue as a Telecom operator will increase"

User-owned home BS

CWI

- Home base station (BS)
- 70-80% indoor usage
- voice produced on 3G
- mainly data usage with application-based hand-over
 - "break than make"
- provision to all customers, "home authentication"
- "0%" OpEx costs for operators
- Maintenance cost reduction
- 12 %/year for an operator-owned
- user owned: 2 %/year customer maintenance support

User-owned home femtocell

• Conditions

- spectrum ownership: 2600 GHz
 should be "unlicensed" (NPT, EU,...)
- alternative: "Give away" guard band spectrum
- adaptive signal adaptation
- Collaborative business
 - known from NFC "trusted service manager" (TSM)
 - trust relation and "prosumer" approach

MOVINON Alt 2: User-owned home BS

Total network cost reduction more than 70% with user-owned base stations

The collaborative business model

Principle Stakeholder

Ecosystem: for NFC

- Consumer
- Key Stakeholders
 - Banks
 - Mobile Operators
 - Merchants
- Supporting Stakeholders
 - Card Associations
 - Transaction Service Providers
 - Mobile Handset Manufacturers
 - Technology Providers (NFC & RFID)
 - Third Parties (Application/Platform Providers)

Source : Mobey Forum Ltd. + Bent Bentsen, 2008

Operational Phase Enrolment Brand/ Lifecycle mgmnt Scheme Trusted Issuer Acquirer Service Bank Bank Manager Mobile Merchant Operator Consumer

Telenor and DnB NOR establishes
 TSM Nordic AS in April 2008

DnBNOR

mandag 20. september 2010

51

Collaborative Radio - ICWMC Tutorial - Sep 2010 - Josef Noll

Collaborative Radio - ICWMC Tutorial - Sep 2010 - Josef Noll

Drivers for collaborative access networks

- Heterogenous networks
 - Different entities
 - reduced revenue
 - "Collaborative Business Model" for seamless wireless access
- The user as the driver
 - reduced costs
 - reduced electromagnetic radiation
- Enabler
 - Operators
 - National authorities
 - EU commission

🖸 NTNU

Conclusions

from indoor

🖸 NTNI

3G/"4G"	users		
	outdoor	out/inn	
>20 Mbit/s	38 %	16 %	
7-20 Mbit/s	32 %	17 %	
1.2-7 Mbit/s	30 %	32 %	
		(-35%)	

Femtocell

 $70_{8}\%$ of

- effective if >30% penetration
- limited user experience "where is my operator"
- **User-provided Femto**
- "no maintenance"
- requires trust relations

UIAPVEATIVE BACTO I & ODERI

Collaborative Radio

Thanks to

My colleagues at UNIK

- Mohammad Mushfigur Rahman Chowdhury for 5G discussions and calculations
 - see his presentation on Friday 25.9.2010
- Arlindo Bengui André for LTE work My colleagues at CWI
- Frank Reichert for comments on 5G Our cooperation partners at CTIF (Aalborg University)
- **Ramjee Prasad** for initiating the "5G discussion"
- Our industrial partners
- Bjørn Amundsen from Telenor for ۲ discussions on coverage and capacity

- Per Hjalmar Lehne from Telenor for generations
- Bent Bentsen from DnB NOR for the information on Payment and TSM Nordic
- **Truls Berg** from Movation for mobile usage data
- Linda Firveld from MobileMonday for femtocell industrialisation
- Shahram G Niri from NEC for collaborative discussions

My Telecom colleagues from various Eurescom projects

and many, many more....

