Linguistic Geometry Tools: Solving Intractable Search Problems without Search

Boris Stilman University of Colorado Denver, USA STILMAN Advanced Strategies, USA

Copyright © 2011 STILMAN Advanced Strategies, LLC. All rights reserved. All other names, pictures and data where referenced are trademarks or property of their respective owners.

Sample Problem

Is there a strategy for the White to make a draw?

The specific question is as follows. Is there an optimal strategy that provides one of the following?

- **1.** Both BOMBERs hit their targets on subsequent time increments and stay safe for at least one time increment.
- 2. Both BOMBERs are destroyed before they hit their targets or immediately after that.

Different Searches (for the same processing time)

2D Problem: Terminal Sets

1. W-Win = BB-Destroyed \cap WB-Safe

2. **B-Win = WB-Destroyed** \cap **BB-Safe**

3. Draw = Safe \cup Destroyed, where Destroyed = BB-Destroyed \cap WB-Destroyed, Safe = BB-Safe \cap WB-Safe

Let A be a set of states. The strategy is called an A strategy if it is represented by the optimal subtree with the terminal nodes which represent states from A, only.

Why do we need the terminal sets expansion?

Expanded Terminal States

Terminal Sets Expansion

Intercept = **BB-Intercept** \cap **WB-Intercept**

is the set of states where the **Destroyed strategy** exists $Destroyed = BB-Destroyed \cap WB-Destroyed.$

 $Protect = BB-Protect \cap WB-Protect$

is the set of states where the **Safe strategy** exists $Safe = BB-Safe \cap WB-Safe$.

LG Zone

Concurrent Zones for Defense Systems

Structure of Expanded Terminal Sets

Structure of BB-Intercept, the set of states where BB-Destroyed strategy exists

Structure of Expanded Terminal Sets: BB-Intercept _{B-Zone}

What has been achieved?

Structure of Expanded Terminal Sets WB-Intercept_{W-Zone}

Structure of Expanded Terminal Sets BB-Protect_{B-Zone}

Structure of Expanded Terminal Sets WB-Protect W-Zone

State Space Decomposition SPACE = BB-Intercept_{B-Zone} \cup BB-Protect_{B-Zone} SPACE = WB-Intercept_{W-Zone} \cup WB-Protect_{W-Zone}

LG Zone

State Space Decomposition

 $SPACE = BB\text{-}Protect_{B\text{-}Zone} \cup BB\text{-}Intercept_{B\text{-}Zone}$

State Space Decomposition

In reality, only one of them takes place.

1. W-Win strategy: W-Win = WB-Safe ∩ BB-Destroyed

The W-Win strategy, if it exists, is to change the status of <u>both</u> W-Zone and B-Zone, WB-Intercept_{W-Zone} ∩ BB-Protect_{B-Zone} ↓ WB-Protect _{Focus} ∩ BB-Intercept_{Focus}

Intend-to-Draw Strategies

Intend-to-Draw Strategies

Intend-to-Draw Strategies

Mixed Draw Strategy

Strategy at the Start State

White follows Mixed Draw strategy while Black follows B-Win strategy

Strategy at the Start State

White follows **Mixed Draw strategy** while Black follows **B-Win strategy**. This resulted in **a Draw strategy**.

