
The BSN Hardware and Software
Platform: Enabling Easy

The Hamlyn Centre
The Institute of Global Health Innovation

Joshua Ellul

jellul@imperial.ac.uk

Platform: Enabling Easy
Development of Body Sensor
Network Applications

Overview

 Brief introduction to Body Sensor Networks

 BSN Hardware

 BSNOS Installation

 Programming with BSNOS

The Hamlyn Centre
The Institute of Global Health Innovation

 Programming with BSNOS

 Sensor API

 Wireless Sensing API

 Where we’re heading

Why BSN?

 500,000+ places in Residential and Nursing Care homes

 400,000 households receive Home Care

 Costs about GBP 11.1 billion per year, rising by 35% by 2021

 Home care GBP 150/wk vs. residential or nursing care GBP
500/wk

The Hamlyn Centre
The Institute of Global Health Innovation

 “The Residential Care and Nursing Home Sector For Older People: An
Analysis of Past Trends, Current and Future Demand,”, Department of Health
Report, August 2002.

 “With Respect to Old Age,” Royal Commission on Long Term Care Report,
March 1999.

BSN vs WSN?

Challenge WSN BSN

Scale Large as the environment Size of the human body

Node number Large number of nodes Few number of nodes

Node size Small size preferable, but
not a major limitation

Miniaturisation required

Data rates Application dependent, but High

The Hamlyn Centre
The Institute of Global Health Innovation

Data rates Application dependent, but
commonly low

High

Context Awareness Typically not essential since
node placement is static

Very important, since the
body physiology is very
sensitive to context change

Power Supply Minimal Much less than that of WSN
due to size restrictions

The BSN Hardware

The Hamlyn Centre
The Institute of Global Health Innovation

The BSN Hardware (cont.)

 Objective: Platform for enabling the development of wearable
wireless sensors for medical and other body related
applications.

 Design criteria: Miniaturised, low cost, low power consumption,
wireless communication capability, intelligent, extendable,

The Hamlyn Centre
The Institute of Global Health Innovation

wireless communication capability, intelligent, extendable,
flexible, easy sensor integration.

 Modular stackable hardware, allowing for further extensions.

The BSN Hardware (cont.)

 TI MSP430 16 bit microcontroller

 Chipcon CC2420 low power wireless transceiver

 4MB Flash memory

The Hamlyn Centre
The Institute of Global Health Innovation

 8 analog channels

 Available Sensors:

Accelerometer, Gyroscope, Magnetometer

Other custom sensors can be integrated

BSNOS

 Many scientists working in medical, sports and other body
related fields do not have the low level embedded development
skills required to develop body sensor network applications
(even many of the computer scientists in the field).

 Even performing simple sensor tests takes time due to most of

The Hamlyn Centre
The Institute of Global Health Innovation

 Even performing simple sensor tests takes time due to most of
the work being passed on to a few embedded developers.

 Thus, we have decided to create a framework to enable ease of
programming simple sensor network applications.

 Currently, it supports an easy to use API through Java,
however any language can be applied.

BSNOS (cont.)

 Furthermore, we will extend the work by providing a GUI block
based programming environment for those with no
programming experience.

The Hamlyn Centre
The Institute of Global Health Innovation

Installation

 (Linux distribution available, Mac port will be available in
October)

 Copy the BSNOSIDE directory to your desired location on your
pc.

The Hamlyn Centre
The Institute of Global Health Innovation

 Plug in the BSN USB board, and wait for the driver to install. If
this is not done automatically, then the file is located in the
BSNOSIDE\drivers directory.

BSNOS Notes
 Java

 Run-time compilation - No interpretation overhead

 16 bit stack width (not 32 bit)
 Use ‘short’ variables rather than ‘int’

The Hamlyn Centre
The Institute of Global Health Innovation

 ‘Objects’ add a layer of abstraction, which requires more
memory and computation. Use static fields and methods as
much as possible.

 Language independent
 Own bytecode

 Active development

BSNOS Tutorial
Where we’re going

The Hamlyn Centre
The Institute of Global Health Innovation

Joshua Ellul

jellul@imperial.ac.uk

Where we’re going

What is BSNOS?

 An active development project in its beta stages.

 An operating system to facilitate body sensor network
application development

 Toolset

 What it is not

The Hamlyn Centre
The Institute of Global Health Innovation

 A networking platform (currently)

Future

 Full Object Oriented support

 Plug-and-play code

 Open Community

The Hamlyn Centre
The Institute of Global Health Innovation

 Open Community
 Library sharing

 Multi-hop support

 Open sensor interface

Get Involved

 New platform
 A lot of opportunity to contribute

 Be the first – help your citations

 Java Programming

 Sensor Design

The Hamlyn Centre
The Institute of Global Health Innovation

 Sensor Design

 MAC Protocols

 Routing Protocols

 UI Design

 Applications

 Compression

Get Involved (cont.)

 Context Awareness

 Debugging

 Distributed Algorithms

 Delay Fault Tolerant Algorithms

 Language extensions

The Hamlyn Centre
The Institute of Global Health Innovation

 Language extensions
 Python?

 Basic?

 Matlab

 GUI Programming
 LabView

 Block Programming

 ….

Keep in touch

 jellul@imperial.ac.uk

 BSN kit’s available

 Tutorials and lessons at your University or Organisation

 Help with your BSN applications

The Hamlyn Centre
The Institute of Global Health Innovation

 Help with your BSN applications

BSNOS Tutorial
Your First BSN Project

The Hamlyn Centre
The Institute of Global Health Innovation

Joshua Ellul

jellul@imperial.ac.uk

Your First BSN Project

Hello World!

 Let’s create a blink application

 In the BSNOS IDE, create a new “BSNOS Java Project” by:
 Right click in the project explorer (or select the “File” menu)

 Select the “New” menu item followed by the “Project” menu item

The Hamlyn Centre
The Institute of Global Health Innovation

 Expand the “BSNOS” project group and select “BSNOS Java
Project Wizard”, and press “Next”.

The Hamlyn Centre
The Institute of Global Health Innovation

 Enter the project name “Blink”, and press “Finish”

The Hamlyn Centre
The Institute of Global Health Innovation

 The project, “Blink”, will be created and it will be displayed in
the “Project Explorer”
 (if the project explorer is not visible on screen you can show it by selecting

the “Window” menu, followed by “Show View” and then “Project
Explorer”).

 Expand the “Blink” project to reveal its contents and also

The Hamlyn Centre
The Institute of Global Health Innovation

 Expand the “Blink” project to reveal its contents and also
expand “src” and “(default package)” to reveal the source code
as depicted below:

 The file “BSNOSAppMain.java” contains the main execution
starting point.

 Open up this file by double-clicking on it. The starting execution
point is defined by the annotation “@BSNOSStart()”.

 Let's now add the source code which will toggle an LED and
then sleep a while.

The Hamlyn Centre
The Institute of Global Health Innovation

then sleep a while.

 We want the application to perform this action ad infinitum, so
we'll wrap the LED toggling and sleeping in a “while loop”.

 So, create a while true loop in the “main()” function as follows:

while(true) {

}

 The BSN hardware functions are encapsulated inside the
“BSN” Java class.

 Type “BSN” on the first line inside the while block, then press
“CTRL” and hit the space bar at the same time. This will display
the auto-complete feature as shown below:

The Hamlyn Centre
The Institute of Global Health Innovation

 The first suggestion in the auto-complete popup should be the
BSN Java class (bsnos.platforms.bsn).

 Press “.” since we want to access the class' functions to interact
with the LEDs. The code to toggle LED number 0 followed by
sleeping for 500 milliseconds is displayed below:

The Hamlyn Centre
The Institute of Global Health Innovation

while(true) {
BSN.toggleLed((byte) 0);
BSN.waitMS((short) 500);

}

 The “toggleLed(byte ledNr)” function is used to toggle the LED

while(true) {
BSN.toggleLed((byte) 0);
BSN.waitMS((short) 500);

}

The Hamlyn Centre
The Institute of Global Health Innovation

 The “toggleLed(byte ledNr)” function is used to toggle the LED
(i.e. LED 0).

 The “waitMS(short ms)” function is used to wait a number of
milliseconds.

 Since numeric literals are represented by integers by the Java
compiler, the LED number must be typecasted to “byte” and
similarly the milliseconds specified must be typecasted to

“short”.

 If any errors exist in the code they will be underlined in red as
show below:

The Hamlyn Centre
The Institute of Global Health Innovation

 If any errors exist, the “Problems” window can be displayed to
further investigate the error.

 Display this window by selecting the “Window” menu followed
by “Show View” and then “Problems”. In the case above, the
“waitMS” function was misspelt as “wajtMS”.

 Once, no errors are reported in the source we can compile the
code to BSNOS bytecode by selecting the project we want to
compile in the “Project Explorer” and then clicking
“BSNOSCompile”:

The Hamlyn Centre
The Institute of Global Health Innovation

 The “BSNOSCompileConsole” window will display compilation
messages. A successful compilation will end with the text
"Compilation Complete." as below:

The Hamlyn Centre
The Institute of Global Health Innovation

 Now, that the code is successfully compiling to BSNOS
bytecode, we can program a BSN node.

 Ensure that the BSN USB board is connected and that a BSN
main board is on the USB board.

 If you are plugging in the USB board for the first time you may
be required to install the drivers for the board (auto-installation

The Hamlyn Centre
The Institute of Global Health Innovation

be required to install the drivers for the board (auto-installation
of the drivers may work as well).

 To download the application to the BSN node first click the
project that you would like to download, in this case the “Blink”
project.

 Then select the COM port which the USB board is connected
to, by clicking the “COM Port” dropdown arrow shown below:

The Hamlyn Centre
The Institute of Global Health Innovation

 Then press the “BSNOSDownloadApp” button which is next to
the dropdown arrow.

 The “BSNOSDownloadConsole” will display download
messages. First BSNOS will be downloaded to the BSN node,
followed by the application you have written.

 A successful download will look similar to below:

The Hamlyn Centre
The Institute of Global Health Innovation

 If the download was successful you should now see one of the
LEDs on the main BSN board toggling!

BSNOS Tutorial
Sample And Send

The Hamlyn Centre
The Institute of Global Health Innovation

Joshua Ellul

jellul@imperial.ac.uk

Sample And Send

The Sample and Send Application

 Sample and Send applications are often sufficient for many
Body Sensor Network deployments.

 Let’s create a sample and send application that samples the
accelerometer and broadcasts the sensed values via the
wireless module.

The Hamlyn Centre
The Institute of Global Health Innovation

wireless module.

 Start by creating a new “BSNOS Java Project” and name it
“SampleAndSend”

Sampling Sensors

 To sample a sensor a single call is required to be made. The
following table lists the different sensor sample functions:

Sensor Function

The Hamlyn Centre
The Institute of Global Health Innovation

Sensor Function

Accelerometer BSN.performAccelSample()

Gyroscope BSN.performGyroSample()

Magnetometer / Compass BSN.performMagSample()

 After sampling a sensor, the respective sensor’s sensed values
can be retrieved using

Sensor Value Function

Accelerometer X short BSN.getAccelXRaw()

Accelerometer Y short BSN.getAccelYRaw()

The Hamlyn Centre
The Institute of Global Health Innovation

Accelerometer Z short BSN.getAccelZRaw()

Gyroscope X short BSN.getGyroXRaw()

Gyroscope Y short BSN.getGyroYRaw()

Gyroscope Z short BSN.getGyroZRaw()

Magnetometer X short BSN.getMagXRaw()

Magnetometer Y short BSN.getMagYRaw()

Magnetometer Z short BSN.getMagZRaw()

Building Radio Messages

 The BSNOS API exposes a number of functions to easily
build up radio messages.

 Individual values of type byte, short, int and float can be
appended to a radio message to be sent.

 The following list is used to append values to a radio

The Hamlyn Centre
The Institute of Global Health Innovation

 The following list is used to append values to a radio
message:

Value to append Function

byte BSN.appendByteToRadio(byte b)

short BSN.appendShortToRadio(short s)

int BSN.appendIntToRadio(int i)

float BSN.appendFloatToRadio(float f)

Sending Radio Messages

 Once a message has been built and is ready to send, a
single call to the following function is used to send the radio
message:
BSN.sendRadioMsg(short destination_addr)

The Hamlyn Centre
The Institute of Global Health Innovation

 To send broadcast messages the following constant is
used:
BSN.BROADCAST_ADDR

The Sample and Send Application

 To create the sample and send application, the first step is
to sample the sensor. Let’s sample the accelerometer by
making a call to: BSN.performAccelSample();

@BSNOSStart()

The Hamlyn Centre
The Institute of Global Health Innovation

@BSNOSStart()
public static void main() {

BSN.performAccelSample();
}

 The next step is to get the sensor readings sensed and
append them to a radio message. So, we will use
BSN.getAccelXRaw to retrieve the accelerometer’s X

axis reading, and then append it to a radio message by
passing the returned value into
BSN.appendShortToRadio@BSNOSStart()

The Hamlyn Centre
The Institute of Global Health Innovation

BSN.appendShortToRadio@BSNOSStart()
public static void main() {

BSN.performAccelSample();

BSN.appendShortToRadio(
BSN.getAccelXRaw()

);
}

 The same is required for the Y and Z axis:

@BSNOSStart()
public static void main() {

BSN.performAccelSample();
BSN.appendShortToRadio(BSN.getAccelXRaw());

The Hamlyn Centre
The Institute of Global Health Innovation

BSN.appendShortToRadio(BSN.getAccelXRaw());
BSN.appendShortToRadio(BSN.getAccelYRaw());
BSN.appendShortToRadio(BSN.getAccelZRaw());

}

 Now, let’s send the radio message as a broadcast
message:

@BSNOSStart()
public static void main() {

BSN.performAccelSample();
BSN.appendShortToRadio(BSN.getAccelXRaw());

The Hamlyn Centre
The Institute of Global Health Innovation

 The above code samples the sensor and sends the 3 axes’
values over the wireless module. Now, to just repeat this.

BSN.appendShortToRadio(BSN.getAccelXRaw());
BSN.appendShortToRadio(BSN.getAccelYRaw());
BSN.appendShortToRadio(BSN.getAccelZRaw());
BSN.sendRadioMsg(BSN.BROADCAST_ADDR);

}

 Now, to wrap the code in a while-true loop so that it is
repeated, along with a pause in-between the cycle and a
toggling of a LED to indicate that the application is running.

@BSNOSStart()
public static void main() {

while (true) {
BSN.performAccelSample();
BSN.appendShortToRadio(BSN.getAccelXRaw());

The Hamlyn Centre
The Institute of Global Health Innovation

BSN.appendShortToRadio(BSN.getAccelXRaw());
BSN.appendShortToRadio(BSN.getAccelYRaw());
BSN.appendShortToRadio(BSN.getAccelZRaw());
BSN.sendRadioMsg(BSN.BROADCAST_ADDR);

BSN.waitMS((short) 500);

BSN.toggleLed((byte) 0);
}

}

 Set the channel id due to collisions

The Hamlyn Centre
The Institute of Global Health Innovation

BSNOS Tutorial
Base Station

The Hamlyn Centre
The Institute of Global Health Innovation

Joshua Ellul

jellul@imperial.ac.uk

Base Station

Base Station

 Base stations are mainly used for collecting data from sensor
networks and forwarding the received data to the PC

 Let’s create a simple base station which forwards messages
received to the PC

 Create a new “BSNOS Base Station Java Project”

The Hamlyn Centre
The Institute of Global Health Innovation

 The default code is enough to have an operating base station.

 The default code performs the following:
 Listens for incoming messages

 When a message is received it forwards it over the serial connection, and
then toggles an LED.

The Hamlyn Centre
The Institute of Global Health Innovation

 The serial protocol used to communicate from base stations to
the PC is defined by:

 <STX> <LENGTH> <PAYLOAD> <ETX>

 Now, compile the Base Station project

 Then, if it is successfully compiled, download it to the Base
Station node.

 Once downloaded, plug in a node programmed with the

The Hamlyn Centre
The Institute of Global Health Innovation

“Sample and Send” application and you should see the base
station node’s LED blinking. This means that it is receiving
data (and attempting to forward it over the serial connection).

BSNOS Tutorial
PC Side Application

The Hamlyn Centre
The Institute of Global Health Innovation

Joshua Ellul

jellul@imperial.ac.uk

PC Side Application

PC Side Application

 Data retrieved in a sensor network is usually meant to be
forwarded to a PC for analysis.

 At this stage, we should have a sample and send node, along
with a base station node receiving the sampled data.

 To create PC Side application, create a new “PC Side Base
Station Project”.

The Hamlyn Centre
The Institute of Global Health Innovation

Station Project”.

 Expand the project in the “Project Explorer”, and then further
expand “src” and “(default package)”

 Then open the Java file.

 The “main” function creates an instance of the PC Side thread,

The Hamlyn Centre
The Institute of Global Health Innovation

which listens to a serial port for incoming data.

 Upon receiving a valid serial message, the
“serialPacketReceived” function will be called.

 The “msg” parameter is the data packet received

 Once the data is received, we can now do anything with it like
save it to a file, display its contents in a console, or a graph.

 The following is code to dump the received message in HEX to
the console:
public void serialPacketReceived(byte[] msg) {

String s = "";

The Hamlyn Centre
The Institute of Global Health Innovation

String s = "";
for(byte b : msg) {

int bi = b & 0xFF;
if (bi < 16) {

s += "0";
}
s += Integer.toHexString(bi);
s += " ";

}
System.out.println(s);

}

BSNOS Tutorial
Making Sense of Messages

The Hamlyn Centre
The Institute of Global Health Innovation

Joshua Ellul

jellul@imperial.ac.uk

Making Sense of Messages

Understanding Messages

 The “Sample and Send” application (from tutoiral 2) samples
the accelerometer and sends the X, Y and Z coordinate over
the wireless medium.

 Radio messages also contain other information:
Message Length

The Hamlyn Centre
The Institute of Global Health Innovation

 Message Length

 Source Address

 Destination Address

 RSSI (Received Signal Strength Indicator)

 CRC (Cyclic Redundancy Check)

 We will now work on parsing the radio message received.

 Create a new “PC Side Base Station Project”, and open the
java file in the “src/(default package)” directory

The Hamlyn Centre
The Institute of Global Health Innovation

 The “serialPacketReceived” function is called when a message
is received, and the “msg” parameter contains the raw data
received.

 To parse the data all we need to do is define the structure of
the message.

 Create a new Java class, named “AccelerometerMessage”

 The radio message structure for the Sample and Send
application is as follows:

<Dest_Addr> <Source Addr> <Length> <X> <Y> <Z> <RSSI>
<CRC>

The Hamlyn Centre
The Institute of Global Health Innovation

 Create “int” fields for each of the message fields as follows:public int destination;
public int source;
public int length;
public int x;
public int y;
public int z;
public int rssi;
public int crc;

 We need to mark each field with the actual datatype for each
field. Change your code to mark each field as follows:

@BSNOSUnsignedShort
public int destination;
@BSNOSUnsignedShort
public int source;
@BSNOSUnsignedByte

The Hamlyn Centre
The Institute of Global Health Innovation

@BSNOSUnsignedByte
public int length;
@BSNOSUnsignedShort
public int x;
@BSNOSUnsignedShort
public int y;
@BSNOSUnsignedShort
public int z;
@BSNOSUnsignedByte
public int rssi;
@BSNOSUnsignedByte
public int crc;

 The “AccelerometerMessage” class provides the message
structure. Note: the order of fields are important so they should
not be altered.

 To change the raw bytes in the “serialPacketReceived” function
to the message structure , and output the coordinates to the

The Hamlyn Centre
The Institute of Global Health Innovation

to the message structure , and output the coordinates to the
console use the following code:

AccelerometerMessage m =
(AccelerometerMessage) ProtocolHelper.getObjectFromMessage(msg,

AccelerometerMessage.class);
System.out.println("X:\t" + m.x + "\tY:\t" + m.y + "\tZ:\t" + m.z);

 Check if the CRC is valid

The Hamlyn Centre
The Institute of Global Health Innovation

Graphing the data

The Hamlyn Centre
The Institute of Global Health Innovation

Joshua Ellul

jellul@imperial.ac.uk

Look at the data

 Looking at the readings can help you to design algorithms

 A graphical UI frame is included in the toolset
 MultiSeriesJChart2DFrame

The Hamlyn Centre
The Institute of Global Health Innovation

 Create an instance of the frame, and run it:

 graphFrame = new MultiSeriesJChart2DFrame(500);

 graphFrame.start();

 Add data to the graph:
 graphFrame.addReading(0, data);

Import the charting library

 Import jchart2d

 Build Path > Configure Build Path > Libraries > Add External
Jars
 jchart2d-3.2.0.jar

The Hamlyn Centre
The Institute of Global Health Innovation

