
Feature Interaction Testing

PANEL
Challenges in Testing and Validation of Hardware/Software Systems

Lisbon, November 19th , 2012

Feature Interaction Testing:
An Industrial Perspective

7th International Conference on Software Engineering Advances (ICSEA 2012)

1

An Industrial Perspective

Jameleddine Hassine
Department of Information and Computer Science

KFUPM, Kingdom of Saudi Arabia
jhassine@kfupm.edu.sa

Feature Interaction Testing

 Increased competition between Telecommunication
service providers

 Pressure on network equipment vendors to rapidly
develop and deliver innovative advanced features

The Feature Interaction Problem

The Feature Interaction Problem

2

develop and deliver innovative advanced features

 This challenge is hindered by the Feature Interaction
Problem

 May severely damage feature development and
deployment

Feature Interaction Testing

 Feature Interaction occurs when the integration of two
features would modify the behavior of one or both features

 Recognized as an important problem in telecommunications
since the early 1980s

 Large number of contributions from academia and industry:

The Feature Interaction Problem (cont.)

The Fault Interaction Problem

3

Large number of contributions from academia and industry:
 Detection
 Resolution
 Avoidance

 Research trends:
 Software engineering approaches (i.e., requirements, modeling,

specification and design techniques)
 Formal methods (applied during design-time of feature, called also

off-line techniques)
 On-line techniques (applied while the features are running)

Feature Interaction Testing

Feature Interaction Testing (FIT) Process

Feature Interaction Testing Process

The Goal is to Discover undesirable (harmful) interactions

4

Feature Interaction Testing

Feature Interaction Testing (FIT) Process

Feature Interaction Testing Process

1. Feature Interaction Analysis (FIA)
 FIT suffers from the problem of combinatorial state explosion

 Impractical to test all feature interactions

 FIA Matrix reporting which feature may interact with which and to what
extent (Low, Medium or High)

5

2. High Level Feature Interaction Scenarios
1. Testbed Details: The type of setup (e.g., MPLS vs. IP), type of HW used

(e.g., ATM, GE Linecard), routing protocols used (e.g., BGP, IS-IS)

2. Feature Provisioning (Configuration flavors of the interacting features)
• Feature configuration level: Apply the feature globally on the router or on a

specific LC or interface

• Feature flavors and options: Many variants with different configuration
parameters

3. Feature Interactions Triggers
• Feature provisioning and permutations (order of applying the feature)

Feature Interaction Testing

Feature Interaction Testing (FIT) Process

Feature Interaction Testing Process

2. High Level Feature Interaction Scenarios (cont.)
4. Network traffic patterns

• Features may treat data traffic differently (e.g., in different ASICs and queues, in
different SW components) which may cause feature interactions in the data plane
(e.g., packets drops, corrupted packets)

• Traffic stream: Protocol (e.g., IPv4/IPv6, UDP, RTP, Multicast, etc.), packet size,

6

• Traffic stream: Protocol (e.g., IPv4/IPv6, UDP, RTP, Multicast, etc.), packet size,
inter-packet gap, jitter, etc.

5. Network events

• Shut/unshut physical interfaces, Reloading network LC, Physically
removing/putting back LCs

6. Stress testing

• Continuous addition/removal of configurations, restarting feature specific
processes

Feature Interaction Testing

Feature Interaction Testing (FIT) Process

Feature Interaction Testing Process

3. Deployment Scenarios

 Explores the potential customer deployment scenarios
involving the new set of features (network architecture,
configurations, scalability numbers (one-dimensional and
multidimensional), etc.).

7

multidimensional), etc.).

 Would help detect quickly the issues that customers are
likely to face in their live networks

 More efficient and cost-effective FIT coverage

Feature Interaction Testing

Feature Interaction Testing (FIT) Process

Feature Interaction Testing Process

4. FIT Test Plan Execution

 FIT test plan is executed using different network topologies
with different scale numbers (for different customers)

 Some parts of the FIT test plan can be automated

Test plan execution may be shifted to cover the identified

8

 Test plan execution may be shifted to cover the identified
grey areas (high rate bugs) first

 A risk prioritization process that aims to choose the 10% to
15% most critical test cases from the high level scenarios

 Risk-driven activity that requires an assessment of the
impact of such priority shifting

 Exit criteria: 100% execution completed, pass rate is above
95 %, and no high severity bugs are still open

Feature Interaction Testing

FIT Process Challenges

FIT Process Challenges

 When to start FIT cycle?
 After UT/IT?
 In parallel with individual feature testing (short-time to market) ?

 FI Analysis
 Subject matter experts (SME) input ? High-level View?
 Low level View (static/dynamic dependencies analysis)?

9

 Low level View (static/dynamic dependencies analysis)?

 Desired vs. Undesired Feature Interaction
 Is it a Feature or a Bug ?

 Risk-driven activities
 Selection of deployment scenarios
 Shift the execution to gray areas

 Automation
 How much automation is needed ?
 Physical network events cannot be automated

Feature Interaction Testing

10

© SMARTESTING 2012 – This document is the property of Smartesting. It may not be reproduced in whole or in part

PANEL Topic:

Challenges in Testing and Validation
of Hardware/Software Systems

Author: Fabien PEUREUX
Contact: peureux@smartesting.com

SoftNet 2012
November 18-23, 2012 – Lisbon, Portugal

mailto:peureux@smartesting.com

© SMARTESTING 2012

Is Business Process model adequate to
capture and validate business requirements?

BPM allows transparency, efficiency, predictability and more
flexibility by offering a systematic and standardized approach to
manage business processes

BPM bridges the gap between IT and business requirements/needs
by creating a common language and a consistent documentation for
the involved stakeholders

BPM establishes a new communication era since the IT teams can
now efficiently collaborate with the business experts through
modeling to achieve a strong alignment of quality objectives

BPM standardization allows to ensure a better traceability between
business processes and implemented business rules, and makes it
possible to (semi-)automate the validation process

© SMARTESTING 2012

Is Model-Based Testing Compatible
with Agile Development?

Model-Based Testing consists in deriving (semi-)automatically test cases from a
test model. In concrete terms, if a requirement changes, the model should be
updated and tests can be quickly reproduced. A high-level of abstraction is
required in order to manage the complexity. Moreover, firstly it helps to handle
the requirements on a non-ambiguous and synthetic format, second it provides a
systematic and highly productive way for test case creation and maintenance. By
keeping solely the test model aligned with the customer (client or product owner)
requirements at all times, it offers the guaranty of an up-to-date test repository.

The generated test case is typically a sequence of high-level SUT actions, with
input parameters and expected output values for each action. These generated
test sequences are similar to the high-level user scenarios that would be
designed manually to drive agile development. They are easily understood by
humans and are complete

The generated test cases can also be used as acceptance tests (at the API
level) that are written by the agile development team or the product owner with
the help of the final client. They check that the application fits the requirements
(functional, performance, security, etc.). The high-level abstraction of the
generated test cases allow the customers to easily review and validate them.

3

© SMARTESTING 2012

Structural testing vs functional testing
What is the optimal strategy?

Structural and functional test cases complement each other. The
optimal strategy thus requires to use the both since each test family
checks different types of errors:
– Structural testing allows to avoid code errors such as infinite loops, null

pointer exceptions,… (it checks that the program does the things right)
– Functional testing allows to avoid inadequate services regarding end-

user needs and requirements (it checks that the program does the right
things)

Nevertheless, due to some constraints, if only one test family should
be used, functional testing has to be maintained since:
– Functional test cases are often less fragile than structural test cases

(code source changes more than API)
– Fatal code errors can sometimes be discovered by functional testing
– Functional testing directly allows to ensure the customer confidence and

satisfaction

	PANEL Topic:Challenges in Testing and Validation of Hardware/Software Systems
	Is Business Process model adequate to capture and validate business requirements?
	Is Model-Based Testing Compatible with Agile Development?
	Structural testing vs functional testingWhat is the optimal strategy?

