

Advanced Computation Models for Rule Based Networks

Alexander Gegov University of Portsmouth, UK <u>alexander.gegov@port.ac.uk</u>

Presentation Outline

Introduction Types of Rule Based Systems Formal Models for Rule Based Networks **Basic Operations in Rule Based Networks Structural Properties of Basic Operations** Advanced Operations in Rule Based Networks Feedforward Rule Based Networks Feedback Rule Based Networks **Evaluation of Rule Based Networks** Rule Based Network Toolbox Conclusion References

Introduction

Modelling Aspects of Systemic Complexity

- non-linearity (input-output functional relationships)
- uncertainty (incomplete and imprecise data)
- dimensionality (large number of inputs and outputs)
- structure (interacting subsystems)

Complexity Management by Rule Based Systems

- model feasibility (achievable in the case of non-linearity)
- model accuracy (achievable in the case of uncertainty)
- model efficiency (problematic in the case of dimensionality)
- model transparency (problematic in the case of structure)

Logical Connections

- disjunctive antecedents and conjunctive rules
- conjunctive antecedents and conjunctive rules
- disjunctive antecedents and disjunctive rules
- conjunctive antecedents and disjunctive rules

Inputs and Outputs

- single-input-single-output
- single-input-multiple-output
- multiple-input-single-output
- multiple-input-multiple-output

Rule Base Properties

- completeness
- consistency
- exhaustiveness
- monotonicity

Rule Base Type

- single rule base (standard rule based system)
- chained rule bases (hierarchical rule based system)
- modular rule bases (rule based network)

Figure 1: Standard rule based system (single rule base)

Figure 2: Hierarchical rule based system (chained rule bases)

Figure 3: Rule based network (modular rule bases)

Node Modelling by If-then Rules

Rule 1: If x is low, then y is small Rule 2: If x is average, then y is medium Rule 3: If x is high, then y is big

Node Modelling by Integer Tables

Linguistic terms for x	Linguistic terms for y
1 (low)	1 (small)
2 (average)	2 (medium)
3 (high)	3 (big)

Node Modelling by Boolean Matrices

x / y	1 (small)	2 (medium)	3 (big)
1 (low)	1	0	0
2 (average)	0	1	0
3 (high)	0	0	1

Node Modelling by Binary Relations

 $\{(1, 1), (2, 2), (3, 3)\}$

Network Modelling by Grid Structures

Layer 1

Level 1 $N_{11}(x, y)$

Network Modelling by Interconnection Structures

Layer 1

Level 1 y

Network Modelling by Block Schemes

Network Modelling by Topological Expressions

 $[N_{11}](x \mid y)$

Horizontal Merging of Nodes

 $[N_{11}] (x_{11} | z_{11,12}) * [N_{12}] (z_{11,12} | y_{12}) = [N_{11*12}] (x_{11} | y_{12})$

* symbol for horizontal merging

N_{11} :		Z _{11,12}	1	2	3
	X ₁₁				
	1		1	0	0
	2		0	0	1
	3		0	1	0

N ₁₂ :	y ₁₂	1	2	3
$Z_{11,12}$				
1		0	1	0
2		0	0	1
3		1	0	0
N _{11*12} :	y ₁₂	1	2	3
X ₁₁	l			
1		0	1	0
2		1	0	0
3		0	0	1

Horizontal Splitting of Nodes

 $[N_{11/12}] (x_{11} | y_{12}) = [N_{11}] (x_{11} | z_{11,12}) / [N_{12}] (z_{11,12} | y_{12})$

/ symbol for horizontal splitting

$N_{11/12}$:		y ₁₂	1	2	3
	X ₁₁				
	1		1	0	0
	2		0	0	1
	3		0	1	0

N ₁₁ :	Z	211,12	1	2	3
	X ₁₁				
	1		0	1	0
	2		1	0	0
	3		0	0	1
N ₁₂ :		y ₁₂	1	2	3
	Z _{11,12}				
	1		0	0	1
	2		1	0	0
	3		0	1	0

Vertical Merging of Nodes

 $[N_{11}] (x_{11} | y_{11}) + [N_{21}] (x_{21} | y_{21}) = [N_{11+21}] (x_{11}, x_{21} | y_{11}, y_{21})$

+ symbol for vertical merging

N ₁₁₊₂₁ :	y ₁₁ , y ₂₁	11	12	13	21	22	23	31	32	33
x_{11}, x_{21}										
11		0	1	0	0	0	0	0	0	0
12		1	0	0	0	0	0	0	0	0
13		0	0	1	0	0	0	0	0	0
21		0	0	0	0	0	0	0	1	0
22		0	0	0	0	0	0	1	0	0
23		0	0	0	0	0	0	0	0	1
31		0	0	0	0	1	0	0	0	0
32		0	0	0	1	0	0	0	0	0
33		0	0	0	0	0	1	0	0	0

Vertical Splitting of Nodes

 $[N_{11-21}] (x_{11}, x_{21} | y_{11}, y_{21}) = [N_{11}] (x_{11} | y_{11}) - [N_{21}] (x_{21} | y_{21})$

– symbol for vertical splitting

N_{11+21} :		y ₁₁ , y ₂₁	11	12	13	21	22	23	31	32	33
	x ₁₁ , x ₂₁										
	11		0	0	0	0	0	1	0	0	0
	12		0	0	0	1	0	0	0	0	0
	13		0	0	0	0	1	0	0	0	0
	21		0	0	0	0	0	0	0	0	1
	22		0	0	0	0	0	0	1	0	0
	23		0	0	0	0	0	0	0	1	0
	31		0	0	1	0	0	0	0	0	0
	32		1	0	0	0	0	0	0	0	0
	33		0	1	0	0	0	0	0	0	0

Output Merging of Nodes

 $[N_{11}] (x_{11,21} | y_{11}); [N_{21}] (x_{11,21} | y_{21}) = [N_{11;21}] (x_{11,21} | y_{11}, y_{21})$

; symbol for output merging

N_{11} :		y ₁₁	1	2	3
	X _{11,21}				
	1		1	0	0
	2		0	0	1
	3		0	1	0

Output Splitting of Nodes

 $[N_{11:21}] (x_{11}, {}_{21} | y_{11}, y_{21}) = [N_{11}] (x_{11,21} | y_{11}) : [N_{21}] (x_{11,21} | y_{21})$

: symbol for output splitting

Associativity of Horizontal Merging

 $[N_{11}] (x_{11} | z_{11,12}) * [N_{12}] (z_{11,12} | z_{12,13}) * [N_{13}] (z_{12,13} | y_{13}) =$ $[N_{11*12}] (x_{11} | z_{12,13}) * [N_{13}] (z_{12,13} | y_{13}) =$ $[N_{11}] (x_{11} | z_{11,12}) * [N_{12*13}] (z_{11,12} | y_{13}) =$ $[N_{11*12*13}] (x_{11} | y_{13})$

$$N_{(11*12)*13} = N_{11*(12*13)}: y_{13} 1 2 3$$

$$X_{11} 1 0 1 0$$

$$2 0 0 1$$

$$3 1 0 0$$

Variability of Horizontal Splitting

 $[N_{11/12/13}] (x_{11} | y_{13}) =$

$[N_{11}] (x_{11} | z_{11,12}) / [N_{12/13}] (z_{11,12} | y_{13}) =$

 $[N_{11/12}] (x_{11} | z_{12,13}) / [N_{13}] (z_{12,13} | y_{13}) =$

 $[N_{11}] \left(x_{11} \, \big| \, z_{11,12} \right) / \, [N_{12}] \left(z_{11,12} \, \big| \, z_{12,13} \right) / \, [N_{13}] \left(z_{12,13} \, \big| \, y_{13} \right)$

$$\begin{array}{ccccccccc} N_{11/(12/13)} = N_{(11/21)/31} & y_{13} & 1 & 2 & 3 \\ & & & & & \\ & & & & & \\ & & & & 1 & 0 & 0 & 1 \\ & & & & & 1 & 0 & 0 \\ & & & & & & 1 & 0 & 0 \\ & & & & & & 0 & 1 & 0 \end{array}$$

N ₁₂ :		Z _{12,13}	1	2	3
	Z _{11,12}				
	1		0	0	1
	2		1	0	0
	3		0	1	0
N ₁₃ :		y ₁₃	1	2	3
	Z _{12,13}				
	1		0	0	1
	2		0	1	0
	3		1	0	0

Associativity of Vertical Merging

$$\begin{split} & [N_{11}] (x_{11} | y_{11}) + [N_{21}] (x_{21} | y_{21}) + [N_{31}] (x_{31} | y_{31}) = \\ & [N_{11+21}] (x_{11}, x_{21} | y_{11}, y_{21}) + [N_{31}] (x_{31} | y_{31}) = \\ & [N_{11}] (x_{11} | y_{11}) + [N_{21+31}] (x_{21}, x_{31} | y_{21}, y_{31}) = \end{split}$$

 $[N_{11+21+31}] (x_{11}, x_{21}, x_{31} | y_{11}, y_{21}, y_{31})$

 $N_{(11+21)+31} = N_{11+(21+31)}$; y_{11} , y_{21} , y_{31} A B C D E F G H I X₁₁, X₂₁, X₃₁ A (111-113) $0_3 \ 1_3 \ 0_3 \ 0_3 \ 0_3 \ 0_3 \ 0_3 \ 0_3 \ 0_3 \ 0_3 \ 0_3$ B (121-123) $1_3 \quad 0_3 \quad 0_3$ $0_3 \quad 0_3 \quad 1_3 \quad 0_3 \quad 0_3$ C (131-133) $0_3 \quad 0_3 \quad 0_3$ D (211-213) E (221-223) $0_3 \quad 0_3 \quad 0_3$ F (231-133) $0_3 \quad 0_3 \quad 0_3$ G (311-313) $0_3 \quad 0_3 \quad 0_3 \quad 0_3 \quad 0_3 \quad 1_3 \quad 0_3 \quad 0_3$ H (321-323) $0_3 \quad 0_3 \quad 0_3 \quad 1_3 \quad 0_3 \quad 0_3$ I (331-333) $0_3 \quad 0_3 \quad 0_3 \quad 0_3 \quad 0_3 \quad 0_3 \quad 1_3 \quad 0_3 \quad 0_3 \quad 0_3$

 $0_3 = 3$ by 3' null matrix, $1_3 = 3$ by 3' anti-diagonal matrix
Variability of Vertical Splitting

$$\begin{split} & [N_{11-21-31}] (x_{11}, x_{21}, x_{31} | y_{11}, y_{21}, y_{31}) = \\ & [N_{11}] (x_{11} | y_{11}) - [N_{21-31}] (x_{21}, x_{31} | y_{21}, y_{31}) = \\ & [N_{11-21}] (x_{11}, x_{21} | y_{11}, y_{21}) - [N_{31}] (x_{31} | y_{31}) = \\ & [N_{11}] (x_{11} | y_{11}) - [N_{21}] (x_{21} | y_{21}) - [N_{31}] (x_{31} | y_{31}) \end{split}$$

 $N_{11-(21-31)} = N_{(11-21)-31} : y_{11}, y_{21}, y_{31} A B C D E F G H I$ X₁₁, X₂₁, X₃₁ A (111-113) $0_3 \ 0_3 \ 0_3 \ 0_3 \ 0_3 \ 0_3 \ 0_3 \ 1_3 \ 0_3 \ 0_3 \ 0_3$ B (121-123) $0_3 \quad 0_3 \quad 0_3 \quad 1_3 \quad 0_3 \quad 0_3$ $0_3 \quad 0_3 \quad 0_3 \quad 0_3 \quad 0_3 \quad 1_3 \quad 0_3 \quad 0_3$ C (131-133) $0_3 \quad 0_3 \quad 0_3$ D (211-213) E (221-223) $0_3 \quad 0_3 \quad 0_3$ F (231-133) $0_3 \quad 0_3 \quad 0_3$ G (311-313) $0_3 \quad 0_3 \quad 1_3 \quad 0_3 \quad 0_3$ H (321-323) $1_3 \quad 0_3 \quad 0_3$ I (331-333) $0_3 \quad 1_3 \quad 0_3 \quad 0_3$

 $0_3 = 3$ by 3' null matrix, $1_3 = 3$ by 3' anti-diagonal matrix

Associativity of Output Merging

 $[N_{11}] (x_{11,21,31} | y_{11}); [N_{21}] (x_{11,21,31} | y_{21}); [N_{31}] (x_{11,21,31} | y_{31}) =$ $[N_{11;21}] (x_{11,21,31} | y_{11}, y_{21}); [N_{31}] (x_{11,21,31} | y_{31}) =$ $[N_{11}] (x_{11,21,31} | y_{11}); [N_{21;31}] (x_{11,21,31} | y_{21}, y_{31}) =$ $[N_{11;21;31}] (x_{11,21,31} | y_{11}, y_{21}, y_{31})$

N ₁₁ :		y ₁₁	1	2	3
	X _{11,21,31}				
	1		1	0	0
	2		0	0	1
	3		0	1	0
N ₂₁ :		y ₂₁	1	2	3
	X _{11,21,31}				
	1		0	1	0
	2		1	0	0
	3		0	0	1

$$\begin{split} N_{(11;21);31} = N_{11;(21;31)} \colon y_{11}, y_{21}, y_{31} & A & B & C & D & E & F & G & H & I \\ & & X_{11,21,31} & & & & \\ 1 & & & 0_3 & 1_3 & 0_3 & 0_3 & 0_3 & 0_3 & 0_3 & 0_3 & 0_3 \\ & 2 & & & 0_3 & 0_3 & 0_3 & 0_3 & 0_3 & 0_3 & 0_3 & 0_3 & 0_3 \\ & 3 & & & & 0_3 & 0_3 & 0_3 & 0_3 & 0_3 & 0_3 & 1_2 & 0_3 & 0_3 \\ & 3 & & & & 0_3 & 0_3 & 0_3 & 0_3 & 0_3 & 1_1 & 0_3 & 0_3 & 0_3 & 0_3 \\ \end{split}$$

 $0_3 = 0 \ 0 \ 0, \ 1_3 = 0 \ 0 \ 1, \ 1_2 = 0 \ 1 \ 0, \ 1_1 = 1 \ 0 \ 0$

Variability of Output Splitting

 $[N_{11:21:31}] (x_{11,21,31} | y_{11}, y_{21}, y_{31}) =$

 $[N_{11}] (x_{11,21,31} | y_{11}) : [N_{21:31}] (x_{11,21,31} | y_{21}, y_{31}) =$

 $[N_{11:21}] (x_{11,21,31} | y_{11}, y_{21}) : [N_{31}] (x_{11,21,31} | y_{31}) =$

 $[N_{11}] (x_{11,21,31} | y_{11}) : [N_{21}] (x_{11,21,31} | y_{21}) : [N_{31}] (x_{11,21,31} | y_{31})$

 $0_3 = 0 \ 0 \ 0, \ 1_3 = 0 \ 0 \ 1, \ 1_2 = 0 \ 1 \ 0, \ 1_1 = 1 \ 0 \ 0$

N ₂₁ :		y ₂₁	1	2	3
	X _{11,21,31}				
	1		0	0	1
	2		1	0	0
	3		0	1	0
N ₃₁ :		y ₃₁	1	2	3
	X _{11,21,31}				
	1		0	0	1
	2		0	1	0
	3		1	0	0

Node Transformation in Input Augmentation

N^{AI} :		У	1	2	3
	x, x ^{AI}	-			
	11		0	1	0
	12		0	1	0
	13		0	1	0
	21		1	0	0
	22		1	0	0
	23		1	0	0
	31		0	0	1
	32		0	0	1
	33		0	0	1

Node Transformation in Output Permutation

 $[N] (x | y_1, y_2) \Rightarrow [N^{PO}] (x | y_2, y_1)$

N :		y ₁ , y ₂	11	12	13	21	22	23	31	32	33
	Χ										
	1		0	0	0	0	0	1	0	0	0
	2		0	0	0	0	0	0	1	0	0
	3		0	1	0	0	0	0	0	0	0

Node Transformation in Feedback Equivalence

 $[N] (x, z | y, z) \Rightarrow [N^{EF}] (x, x^{EF} | y, y^{EF})$

N: y, z 11 12 21 22 x, z 11 ? 21 22 11 ? ? ? ? ? 12 ? ? ? ? 21 ? ? ? ? 22 ? ? ? ?

Node Identification in Horizontal Merging

A * U = C

A, C – known nodes, U – non-unique unknown node

C :		y _{1U} , y _{2U}	11	12	21	22
	X_{1A}, X_{2A}	L				
	11		0	0	0	1
	12		0	0	0	1
	21		1	0	0	0
	22		1	0	0	0
U:		y _{1U} , y _{2U}	11	12	21	22
	Z _{A,U}					
	1		0	0	0	1
	2		0	0	0	0
	3		1	0	0	0

U * B = C

B, C – known nodes, U – non-unique unknown node

B :		y _{1B} , y _{2B}	11	12	21	22
	Z _{U,B}					
	1		1	0	0	0
	2		0	0	0	0
	3		0	0	0	1

C :		y _{1B} , y _{2B}	11		12	21	22
	X_{1U}, X_{2U}						
	11		0		0	0	1
	12		0		0	0	1
	21		1		0	0	0
	22		1		0	0	0
IJ.		711 D	1	2	3		
0.	x _{1U} , x ₂	20,в 2U	•		U		
	11		0	0	1		
	12		0	0	1		
	21		1	0	0)	
	22		1	0	0)	

A * U * B = C

A, B, C – known nodes, U – non-unique unknown node

A * U = DD * B = C

D – non-unique unknown node

U * B = EA * E = C

E – non-unique unknown node

Node Identification in Vertical Merging

 $\mathbf{A} + \mathbf{U} = \mathbf{C}$

A, C – known nodes, U – unique unknown node

C :	y _A , y _U	11	12	13	21	22	23	31	32	33
X _A ,	, X _U									
11		0	0	0	1	0	0	0	0	0
12		0	0	0	0	0	1	0	0	0
13		0	0	0	0	1	0	0	0	0
21		1	0	0	0	0	0	0	0	0
22		0	0	1	0	0	0	0	0	0
23		0	1	0	0	0	0	0	0	0
31		0	0	0	0	0	0	1	0	0
32		0	0	0	0	0	0	0	0	1
33		0	0	0	0	0	0	0	1	0

U + B = C

B, C – known nodes, U – unique unknown node

B :		y_{B}	1	2	3
	XB				
	1		0	1	0
	2		0	0	1
	3		1	0	0

C :		y_U, y_B	11	12	13	21	22	23	31	32	33
	x_U, x_B										
	11		0	0	0	0	0	0	0	1	0
	12		0	0	0	0	0	0	0	0	1
	13		0	0	0	0	0	0	1	0	0
	21		0	1	0	0	0	0	0	0	0
	22		0	0	1	0	0	0	0	0	0
	23		1	0	0	0	0	0	0	0	0
	31		0	0	0	0	1	0	0	0	0
	32		0	0	0	0	0	1	0	0	0
	33		0	0	0	1	0	0	0	0	0

 $\mathbf{A} + \mathbf{U} + \mathbf{B} = \mathbf{C}$

A, B, C – known nodes, U – unique unknown node

A + U = DD + B = C

D – unique unknown node

U + B = EA + E = C

E – unique unknown node

Node Identification in Output Merging

A; U = C

A, C – known nodes, U – unique unknown node

A :		УA	1	2	3
	X _{A,U}				
	1		0	1	0
	2		1	0	0
	3		0	0	1

C :		y _A , y _U	11	12	13	21	22	23	31	32	33
	X _{A,U}										
	1		0	0	0	1	0	0	0	0	0
	2		0	0	1	0	0	0	0	0	0
	3		0	0	0	0	0	0	0	1	0
	$\boldsymbol{\sim}$		U	U	0	U	U	U	U		

U: $y_U \ 1 \ 2 \ 3$ $x_{A,U}$ $1 \ 1 \ 0 \ 0$ $2 \ 0 \ 0 \ 1$

U; B = C

B, C – known nodes, U – unique unknown node

B :		y_{B}	1	2	3
	X _{U,B}				
	1		0	1	0
	2		0	0	1
	3		1	0	0

	y_U , y_B	11	12	13	21	22	23	31	32	33
X _{U,B}										
1		0	0	0	0	0	0	0	1	0
2		0	0	1	0	0	0	0	0	0
3		0	0	0	1	0	0	0	0	0
	x _{U,B} 1 2 3	У _U , У _В Х _{U,В} 1 2 3	$\begin{array}{cccc} y_{U}, y_{B} & 11 \\ x_{U,B} & & & \\ 1 & & 0 \\ 2 & & 0 \\ 3 & & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

0 1 0

A; U; B = C

A, B, C – known nodes, U – unique unknown node

A; U = DD; B = C

D – unique unknown node

U; B = EA; E = C

E – unique unknown node

Feedforward Rule Based Networks

Network with Single Level and Single Layer

• rule based system

1,1

$[N_{11}] (x_{11} | y_{11})$

Feedforward Rule Based Networks

<u>Network with Single Level and Multiple Layers</u>• queue of 'n' rule based systems

Example 1 (Network Analysis)

 $[N_{11}] (x_{11} | z_{11,12}^{1,2}, z_{11,12}^{2,1}) * [N_{12}] (z_{11,12}^{2,1}, z_{11,12}^{1,2} | y_{12}) \Rightarrow$

 $[N_{11}^{PO}] (x_{11} | z_{11,12}^{2,1}, z_{11,12}^{1,2}) * [N_{12}] (z_{11,12}^{2,1}, z_{11,12}^{1,2} | y_{12}) \Rightarrow$

 $[N_{11}^{PO} * N_{12}] (x_{11} | y_{12}) \Rightarrow$

Feedforward Rule Based Networks

 $N_E = N_{11}^{PO} * N_{12}$

Algorithm 1.1 (Network Design)
1. Define N_E and N₁₂.
2. Derive N₁₁^{PO}, if possible.
3. Find N₁₁ by inverse output permutation of N₁₁^{PO}.

Algorithm 1.2 (Network Design)

1. Define N_E and N_{11} .

- 2. Find N_{11}^{PO} by output permutation of N_{11} .
- 3. Derive N_{12} , if possible.
Network with Multiple Levels and Single Layer

• stack of 'm' rule based systems

Example 2 (Network Analysis)

 $[N_{11}] (x_{11,21}^{1,1}, x_{11}^{2} | y_{11}); [N_{21}] (x_{11,21}^{1,1} | y_{21}) \Rightarrow$ $[N_{11}] (x_{11,21}^{1,1}, x_{11}^{2} | y_{11}); [N_{21}^{AI}] (x_{11,21}^{1,1}, x_{11}^{2} | y_{21}) \Rightarrow$

$$[N_{11}; N_{21}^{AI}] (x_{11,21}^{1,1}, x_{11}^{2} | y_{11}, y_{21}) \Rightarrow$$

 $N_E = N_{11} \text{ ; } N_{21}{}^{AI}$

Algorithm 2.1 (Network Design)
1. Define N_E and N₂₁.
2. Find N₂₁^{AI} by input augmentation of N₂₁.
3. Derive N₁₁, if possible.

Algorithm 2.2 (Network Design)
1. Define N_E and N₁₁.
2. Derive N₂₁^{AI}, if possible.
3. Find N₂₁ by inverse input augmentation of N₂₁^{AI}.

<u>Network with Multiple Levels and Multiple Layers</u>
grid of 'm by n' rule based systems

1,1	•••	1,n
•••	• • •	• • •
m,1	•••	m,n

Example 3 (Network Analysis)

 $\{ [N_{11}] (x_{11} | z_{11,12}^{1,1}, z_{11,22}^{2,1}) + [N_{21}] (x_{21} | z_{21,12}^{1,2}) \} *$

 $\{ [N_{12}] (z_{11,12}^{1,1}, z_{21,12}^{1,2} | y_{12}) + [N_{22}] (z_{11,22}^{2,1} | y_{22}) \} \Rightarrow$

 $[N_{11} + N_{21}] (X_{11}, X_{21} | Z_{11} | 2^{1,1}, Z_{11} | 2^{2,1}, Z_{21} | 2^{1,2}) *$ $[N_{12} + N_{22}] (Z_{11} + 12^{1,1}, Z_{21} + 12^{1,2}, Z_{11} + 22^{2,1} | V_{12}, V_{22}) \Rightarrow$ $[(N_{11} + N_{21})^{PO}] (X_{11}, X_{21} | Z_{11} | 2^{1,1}, Z_{21} | 2^{1,2}, Z_{11} 2^{2,1}) *$ $[N_{12} + N_{22}] (Z_{11} + 12^{1,1}, Z_{21} + 12^{1,2}, Z_{11} + 22^{2,1} | Y_{12}, Y_{22}) \Rightarrow$ $[(N_{11} + N_{21})^{PO} * (N_{12} + N_{22})] (x_{11}, x_{21} | y_{12}, y_{22}) \Rightarrow$ $N_{\rm F} = (N_{11} + N_{21})^{\rm PO} * (N_{12} + N_{22})$

Algorithm 3.1 (Network Design)

- 1. Define N_E , N_{21} , N_{12} and N_{22} .
- 2. Find $N_{12} + N_{22}$ by vertical merging of $N_{12} + N_{22}$.
- 3. Derive $(N_{11} + N_{21})^{PO}$, if possible.
- 4. Find $N_{11} + N_{21}$ by inverse output permutation of $(N_{11} + N_{21})^{PO}$.
- 5. Derive N_{11} from $N_{11} + N_{21}$, if possible.

Algorithm 3.2 (Network Design)

- 1. Define N_E , N_{11} , N_{12} and N_{22} .
- 2. Find $N_{12} + N_{22}$ by vertical merging of $N_{12} + N_{22}$.
- 3. Derive $(N_{11} + N_{21})^{PO}$, if possible.
- 4. Find $N_{11} + N_{21}$ by inverse output permutation of $(N_{11} + N_{21})^{PO}$.
- 5. Derive N_{21} from $N_{11} + N_{21}$, if possible.

- Algorithm 3.3 (Network Design)
- 1. Define N_E , N_{11} , N_{21} and N_{22} .
- 2. Find $N_{11} + N_{21}$ by vertical merging of $N_{11} + N_{21}$.
- 3. Find $(N_{11} + N_{21})^{PO}$ by output permutation of $N_{11} + N_{21}$.
- 4. Derive $N_{12} + N_{22}$, if possible.
- 5. Derive N_{12} from $N_{12} + N_{22}$, if possible.

Algorithm 3.4 (Network Design)

- 1. Define N_E , N_{11} , N_{21} and N_{12} .
- 2. Find $N_{11} + N_{21}$ by vertical merging of $N_{11} + N_{21}$.
- 3. Find $(N_{11} + N_{21})^{PO}$ by output permutation of $N_{11} + N_{21}$.
- 4. Derive $N_{12} + N_{22}$, if possible.
- 5. Derive N_{22} from $N_{12} + N_{22}$, if possible.

Network with Single Local Feedback

• one node embraced by feedback

N(F) – node embraced by feedback N – nodes with no feedback

Example 4 (Network Analysis)

 $[N_{11}] (x_{11}, w_{11} | z_{11,12}^{2,1}, v_{11}) * [N_{12}] (z_{11,12}^{1,1} | y_{12}),$ $[F_{11}] (v_{11} | w_{11}) \Rightarrow$ $[N_{11}] (x_{11}, w_{11} | z_{11,12}^{2,1}, v_{11}) *$

 $\{ [N_{12}] (z_{11,12}^{1,1} | y_{12}) + [F_{11}] (v_{11} | w_{11}) \} \Rightarrow$

 $[N_{11} * (N_{12} + F_{11})] (x_{11}, w_{11} | y_{12}, w_{11}) \Rightarrow$

 $[(N_{11} * (N_{12} + F_{11}))^{EF}] (x_{11}, x^{EF} | y_{12}, y^{EF}) \Rightarrow$

 $N_E = (N_{11} * (N_{12} + F_{11}))^{EF}$

 F_{11} – feedback node

Algorithm 4.1 (Network Design)

- 1. Define N_E , N_{11} and N_{12} .
- 2. Confirm that N_E satisfies the feedback constraints, if possible.
- 3. Make N_E equal to $N_{11} * (N_{12} + F_{11})$.
- 4. Derive $N_{12} + F_{11}$ from N_E , if possible.
- 5. Derive F_{11} from $N_{12} + F_{11}$, if possible.

Network with Multiple Local Feedback

• at least two nodes embraced by separate feedback

N(F1), N(F2) – nodes embraced by separate feedback N – nodes with no feedback

Example 5 (Network Analysis)

 $[N_{11}] (x_{11}, w_{11} | z_{11,12}^{1,1}, v_{11}) * [N_{12}] (z_{11,12}^{1,1}, w_{12} | y_{12}, v_{12}),$ $[F_{11}] (v_{11} | w_{11}), [F_{12}] (v_{12} | w_{12}) \Rightarrow$ { $[N_{11}](x_{11}, w_{11} | z_{11,12}^{1,1}, v_{11}) + [I_{31}](w_{12} | w_{12})$ } * { $[N_{12}](z_{11,12}^{1,1}, w_{12} | y_{12}, v_{12}) + [F_{11}](v_{11} | w_{11})$ } * $\{ [I_{13}] (y_{12} | y_{12}) + [F_{12}] (v_{12} | w_{12}) + [I_{33}] (w_{11} | w_{11}) \} \Rightarrow$

 $[N_{11} + I_{31}] (x_{11}, w_{11}, w_{12} | z_{11,12}^{1,1}, v_{11}, w_{12}) *$ $[N_{12} + F_{11}] (z_{11 12}^{1,1}, w_{12}, v_{11} | v_{12}, v_{12}, w_{11}) *$ $[I_{13} + F_{12} + I_{33}] (y_{12}, y_{12}, w_{11} | y_{12}, w_{12}, w_{11}) \Rightarrow$ $[(N_{11} + I_{31})^{PO}] (x_{11}, w_{11}, w_{12} | z_{11,12}^{1,1}, w_{12}, v_{11}) *$ $[N_{12} + F_{11}] (z_{11,12}^{1,1}, w_{12}, v_{11} | y_{12}, v_{12}, w_{11}) *$ $[I_{13} + F_{12} + I_{33}] (y_{12}, y_{12}, w_{11} | y_{12}, w_{12}, w_{11}) \Rightarrow$

 $[(N_{11} + I_{31})^{PO} * (N_{12} + F_{11}) * (I_{13} + F_{12} + I_{33})]$

 $(x_{11}, w_{11}, w_{12} | y_{12}, w_{12}, w_{11}) \Rightarrow$ $[((N_{11} + I_{31})^{PO} * (N_{12} + F_{11}) * (I_{13} + F_{12} + I_{33}))^{FE}]$

 $(\mathbf{x}_{11}, \mathbf{x}_1^{\text{FE}}, \mathbf{x}_2^{\text{FE}} | \mathbf{y}_{12}, \mathbf{y}_2^{\text{FE}}, \mathbf{y}_1^{\text{FE}}) \Longrightarrow$

 $N_{E} = ((N_{11} + I_{31})^{PO} * (N_{12} + F_{11}) * (I_{13} + F_{12} + I_{33}))^{FE}$

 F_{11} , F_{12} – feedback nodes I_{31} , I_{13} , I_{33} – identity nodes

- Algorithm 5.1 (Network Design)
- 1. Define N_E , N_{11} , N_{12} , I_{31} , I_{13} , I_{33} and F_{12} .
- 2. Confirm that N_E satisfies the feedback constraints, if possible.
- 3. Make N_E equal to $(N_{11} + I_{31})^{PO} * (N_{12} + F_{11}) * (I_{13} + F_{12} + I_{33})$.
- 4. Find $N_{11} + I_{31}$ by vertical merging of N_{11} and I_{31} .
- 5. Find $(N_{11} + I_{31})^{PO}$ by output permutation of $N_{11} + I_{31}$.
- 6. Find $I_{13} + F_{12} + I_{33}$ by vertical merging of I_{13} , F_{12} and I_{33} .
- 7. Derive $N_{12} + F_{11}$ from N_E , if possible.
- 8. Derive F_{11} from $N_{12} + F_{11}$, if possible.

Algorithm 5.2 (Network Design)

- 1. Define N_E , N_{11} , N_{12} , I_{31} , I_{13} , I_{33} and F_{11} .
- 2. Confirm that N_E satisfies the feedback constraints, if possible.
- 3. Make N_E equal to $(N_{11} + I_{31})^{PO} * (N_{12} + F_{11}) * (I_{13} + F_{12} + I_{33})$.
- 4. Find $N_{11} + I_{31}$ by vertical merging of N_{11} and I_{31} .
- 5. Find $(N_{11} + I_{31})^{PO}$ by output permutation of $N_{11} + I_{31}$.
- 6. Find $N_{12} + F_{11}$ by vertical merging of N_{12} and F_{11} .
- 7. Find $(N_{11} + I_{31})^{PO} * (N_{12} + F_{11})$ by horizontal merging of $(N_{11} + I_{31})^{PO}$ and $(N_{12} + F_{11})$.
- 8. Derive $I_{13} + F_{12} + I_{33}$ from N_E , if possible.
- 9. Derive F_{12} from $I_{13} + F_{12} + I_{33}$, if possible.

Network with Single Global Feedback

• one set of at least two adjacent nodes embraced by feedback

N1(F) N	Ν	N1(F)
N2(F) N	Ν	N2(F)

 ${N1(F), N2(F)}$ – set of nodes embraced by feedback N – nodes with no feedback

Example 6 (Network Analysis)

 $[N_{11}] (x_{11}, w_{12,11} | z_{11,12}^{1,1}) * [N_{12}] (z_{11,12}^{1,1} | y_{12}, v_{12,11}),$ $[F_{12,11}] (v_{12,11} | w_{12,11}) \Rightarrow$ $[N_{11}] (x_{11}, w_{12,11} | z_{11,12}^{1,1}) * [N_{12}] (z_{11,12}^{1,1} | y_{12}, v_{12,11}) *$ $\{ [I_{13}] (y_{12} | y_{12}) + [F_{12,11}] (y_{12}, v_{12,11} | y_{12}, w_{12,11}) \} \Rightarrow$ $[N_{11} * N_{12} * (I_{13} + F_{12,11})] (x_{11}, w_{12,11} | y_{12}, w_{12,11})$ $[(N_{11} * N_{12} * (I_{13} + F_{12,11}))^{EF}] (x_{11}, x^{EF} | y_{12}, y^{EF}) \Rightarrow$

 $N_E = (N_{11} * N_{12} * (I_{13} + F_{12,11}))^{EF}$

 $F_{12,11}$ – feedback node I_{13} – identity node

Algorithm 6.1 (Network Design)

- 1. Define N_E , N_{11} , N_{12} , I_{13} and $F_{12,11}$.
- 2. Confirm that N_E satisfies the feedback constraints, if possible.
- 3. Make N_E equal to $N_{11} * N_{12} * (I_{13} + F_{12,11})$.
- 4. Find $N_{11} * N_{12}$ by horizontal merging of N_{11} and N_{12} .
- 5. Derive $I_{13} + F_{12,11}$ from N_E , if possible.
- 6. Derive $F_{12,11}$ from $I_{13} + F_{12,11}$, if possible.

Network with Multiple Global Feedback

• at least two sets of nodes embraced by separate feedback with at least two adjacent nodes in each set

 $\{N1(F1), N2(F1)\}, \{N1(F2), N2(F2)\}$ – sets of nodes embraced by separate feedback

Example 7 (Network Analysis)

 $[N_{11}] (x_{11}, w_{12,11} | z_{11,12}^{1,1}) * [N_{12}] (z_{11,12}^{1,1}, w_{13,12} | z_{12,13}^{1,1}, v_{12,11}) * \\[N_{13}] (z_{12,13}^{1,1} | y_{13}, v_{13,12}),$

 $[F_{12,11}] (v_{12,11} | w_{12,11}), [F_{13,12}] (v_{13,12} | w_{13,12}) \Rightarrow$

{ $[N_{11}](x_{11}, w_{12,11} | z_{11,12}^{1,1}) + [I_{31}](w_{13,12} | w_{13,12})$ } *

 $[N_{12}] (z_{11,12}^{1,1}, w_{13,12} | z_{12,13}^{1,1}, v_{12,11}) *$

{ $[N_{13}](z_{12,13}^{1,1} | y_{13}, v_{13,12}) + [I_{33}](v_{12,11} | v_{12,11})$ } *

 $\{ [I_{14}] (y_{13} | y_{13}) + [F_{13,12}] (v_{13,12} | w_{13,12}) +$

 $[F_{12,11}] (v_{12,11} | w_{12,11}) \} \Longrightarrow$

 $[(N_{11} + I_{31}) * N_{12} * (N_{13} + I_{33}) * (I_{14} + F_{13,12} + F_{12,11})]$

 $(\mathbf{x}_{11}, \mathbf{w}_{11}, \mathbf{w}_{12} | \mathbf{y}_{12}, \mathbf{w}_{12}, \mathbf{w}_{11}) \Rightarrow$

 $[((N_{11} + I_{31}) * N_{12} * (N_{13} + I_{33}) * (I_{14} + F_{13,12} + F_{12,11}))^{FE}]$

 $(x_{11}, x_1^{\text{ FE}}, x_2^{\text{ FE}} | y_{12}, y_2^{\text{ FE}}, y_1^{\text{ FE}}) \Longrightarrow$

 $N_{E} = ((N_{11} + I_{31}) * N_{12} * (N_{13} + I_{33}) * (I_{14} + F_{13,12} + F_{12,11}))^{FE}$

 $\begin{array}{l} F_{12,11},\,F_{13,12}-\text{feedback nodes}\\ I_{31},\,I_{33},\,I_{14}-\text{identity nodes} \end{array}$

Algorithm 7.1 (Network Design)

1. Define N_E , N_{11} , N_{12} , N_{13} , I_{14} , I_{31} , I_{33} and $F_{13,12}$.

2. Confirm that N_E satisfies the feedback constraints, if possible. 3. Make N_E equal to

 $(N_{11} + I_{31}) * N_{12} * (N_{13} + I_{33}) * (I_{14} + F_{13,12} + F_{12,11}).$

4. Find $N_{11} + I_{31}$ by vertical merging of N_{11} and I_{31} .

5. Find $(N_{11} + I_{31}) * N_{12}$ by horizontal merging of $(N_{11} + I_{31})$ and N_{12} .

6. Find $N_{13} + I_{33}$ by vertical merging of N_{13} and I_{33} . 7. Find $(N_{11} + I_{31}) * N_{12} * (N_{13} + I_{33})$ by horizontal merging of $(N_{11} + I_{31}) * N_{12}$ and $(N_{13} + I_{33})$. 8. Derive $I_{14} + F_{13,12} + F_{12,11}$ from N_E , if possible. 9. Find $I_{14} + F_{13,12}$ by vertical merging of I_{14} and $F_{13,12}$. 10. Derive $F_{12,11}$ from $I_{14} + F_{13,12} + F_{12,11}$, if possible.

Algorithm 7.2 (Network Design)

- 1. Define N_E , N_{11} , N_{12} , N_{13} , I_{14} , I_{31} , I_{33} and $F_{11,12}$.
- 2. Confirm that N_E satisfies the feedback constraints, if possible. 3. Make N_E equal to
- $(N_{11} + I_{31}) * N_{12} * (N_{13} + I_{33}) * (I_{14} + F_{13,12} + F_{12,11}).$
- 4. Find $N_{11} + I_{31}$ by vertical merging of N_{11} and I_{31} .

5. Find $(N_{11} + I_{31}) * N_{12}$ by horizontal merging of $(N_{11} + I_{31})$ and N_{12} .

6. Find $N_{13} + I_{33}$ by vertical merging of N_{13} and I_{33} .

7. Find $(N_{11} + I_{31}) * N_{12} * (N_{13} + I_{33})$ by horizontal merging of $(N_{11} + I_{31}) * N_{12}$ and $(N_{13} + I_{33})$.

8. Derive $I_{14} + F_{13,12} + F_{12,11}$ from N_E , if possible.

9. Derive $F_{13,12}$ from $I_{14} + F_{13,12} + F_{12,11}$, if possible.

Structural Evaluation Metrics

- number of non-identity network nodes
- number of non-identity network connections
- overall number of cells in grid structure
- number of populated cells in grid structure
- average path length from first layer nodes to last layer nodes
- average path depth from first level nodes to last level nodes

Linguistic Evaluation Metrics

- composing hierarchical into standard rule based systems
- decomposing standard into hierarchical rule based systems

Composition Formula

$$N_{E,x} = *_{p=1}^{x-1} (N_{1,p} + +_{q=p+1}^{x-1} I_{q,p})$$

 $N_{E,x}$ – equivalent node for a rule based network with x inputs

Decomposition Algorithm

- 1. Find $N_{1,1}$ from the first two inputs and the output.
- 2. If x=2, go to step 9.
- 3. Set k=3.
- 4. While $k \le x$, do steps 5-7.
- 5. Find $N_{E,k}$ from the first k inputs and the output.
- 6. Derive $N_{1,k-1}$ from the formula for $N_{E,k}$, if possible.
- 7. Set k = k+1.
- 8. Endwhile.
- 9. End.

 $N_{E,k}$ – equivalent node for a rule based network with first k inputs

Functional Evaluation Metrics

- model performance indicators
- applications to case studies

Feasibility Index (FI)

 $FI = sum_{i=1}^{n} (p_i / n)$

n – number of non-identity nodes p_i – number of inputs to the i-th non-identity node lower FI \Rightarrow better feasibility

Accuracy Index (AI)

 $AI = sum_{i=1}^{nl} sum_{j=1}^{qil} sum_{k=1}^{vji} (|y_{ji}^{k} - d_{ji}^{k}| / vij)$

nl – number of nodes in the last layer qil – number of outputs from the i-th node in the last layer vji – number of discrete values for the j-th output from the i-th node in the last layer

 y_{ji}^{k} , d_{ji}^{k} – simulated and measured k-th discrete value for the j-th output from the i-th node in the last layer

lower AI \Rightarrow better accuracy

Efficiency Index (EI)

 $EI = sum_{i=1}^{n} (q_i^{IOM} \cdot r_i^{IOM})$

n – number of non-identity nodes

IOM – input output mapping

 q_i^{IOM} – number of outputs from the i-th non-identity node with an associated IOM

 r_i^{IOM} – number of rules for the i-th non-identity node with an associated IOM

lower EI \Rightarrow better efficiency

Transparency Index (TI)

TI = (p + q) / (n + m)

p – overall number of inputs q – overall number of outputs n – number of non-identity nodes m – number of non-identity connections lower TI \Rightarrow better transparency

Case Study 1 (Ore Flotation)

Inputs:

- x_1 copper concentration in ore pulp
- x_2 iron concentration in ore pulp
- x_3 debit of ore pulp

Output:

y – new copper concentration in ore pulp

Figure 4: Standard rule based system for case study 1

Figure 5: Hierarchical rule based system for case study 1

Figure 6: Rule based network for case study 1

Table 1: Models performance for case study 1

Index / Model	Standard rule	Hierarchical rule	Rule based
	based system	based system	network
Feasibility	3	2	2
Accuracy	4.35	4.76	4.60
Efficiency	1331	242	1331
Transparency	4	1.33	1.33

FI – RBN superior to SRBS and equivalent to HRBS
AI – RBN inferior to SRBS and superior to HRBS
EI – RBN equivalent to SRBS and inferior to HRBS
TI – RBN superior to SRBS and equivalent to HRBS
Case Study 2 (Retail Pricing)

Inputs:

- x_1 expected selling price for retail product
- x_2 difference between selling price and cost for retail product
- x₃ expected percentage to be sold from retail product

Output:

y – maximum cost for retail product

Figure 7: Standard rule based system for case study 2

Figure 9: Rule based network for case study 2

 Table 2: Models performance for case study 2

Index / Model	Standard rule	Hierarchical based	Rule based
	based system	based system	network
Feasibility	3	2	2
Accuracy	2.86	5.57	3.64
Efficiency	125	80	125
Transparency	4	1.33	1.33

FI – RBN superior to SRBS and equivalent to HRBS
AI – RBN inferior to SRBS and superior to HRBS
EI – RBN equivalent to SRBS and inferior to HRBS
TI – RBN superior to SRBS and equivalent to HRBS

Composition of Hierarchical into Standard Rule Based System

- full preservation of model feasibility
- maximal improvement of model accuracy
- fixed loss of model efficiency
- full preservation of model transparency

Decomposition of Standard into Hierarchical Rule Based System

- no change of model feasibility
- minimal loss of model accuracy
- fixed improvement of model efficiency
- no change of model transparency

Rule Based Network Toolbox

Details

- developed by Erasmus and project students
- implemented in the Matlab environment
- downloadable from the Mathworks web site
- visible from the Springer web site

<u>Structure</u>

- Matlab files for basic operations on nodes
- Matlab files for advanced operations on nodes
- Matlab files for auxiliary operations
- Word files with illustration examples

Conclusion

Theoretical Significance of Rule Based Networks

- novel application of discrete mathematics and control theory
- detailed validation by test examples and case studies

Methodological Impact of Rule Based Networks

- extension of standard and hierarchical rule based systems
- bridge between standard and hierarchical rule based systems
- novel framework for different types of rule based systems

Application Areas of Rule Based Networks

- modelling and simulation in the mining industry
- modelling and simulation in the retail industry

Conclusion

Other Applications of Rule Based Networks

- finance (mortgage evaluation)
- healthcare (patient management)
- transport (commuter modelling)
- robotics (path planning)
- construction (crane control)
- football (score prediction)
- hospitality (rice cooking)
- navigation (boat sailing)
- environment (weather forecasting)
- business (risk analysis)

References

A.Gegov, Fuzzy Networks for Complex Systems: A Modular Rule Base Approach, Springer, Berlin, 2010

