

Smart Sensor Systems Design for Smartphones, Tablets and IoT: New Advanced Design Approach

Dr. Sergey Y. Yurish, R&D Director Excelera, S.L., Barcelona, Spain

Tutorial, August 23, 2015, Venice, Italy

Outline

- Introduction: Markets and Definitions
- Ø Modern Challenges
- Sensor Systems Design: Introduction
- 4 Advanced Sensor Systems Design
- Sensors Systems Examples
- 6 The Future and Summary

Outline

Introduction: Markets and Definitions

- 2 Modern Challenges
- **B** Sensor Systems Design: Introduction
- 4 Advanced Sensor Systems Design
- **5** Sensors Systems Examples
- **6** The Future and Summary

Internet of Things (IoT)

- Devices are focused on sensing and actuating of physical environment
- IoT represents the convergence in advances miniaturization, wireless connectivity, increased data storage capacity and batteries
- IoT wouldn't be possible without sensors
- A common requirement for IoT end nodes is the need for small size

Global Internet of Things (IoT) Market

- Grows at a compound annual growth rate CAGR of 31.72 % over the period 2014-2019 (*Research and Markets*)
- 50 billion devices are expected to be connected to the Internet by 2020 (*Cisco's IBSG*)
- By 2020, sensors will link 212 billion of objects through the Internet of Things (IoT): (*IDC*)
- Internet of Things market is on track to hit \$7.1 trillion in 2020 (*IT research agency, IDC*)

Global Smartphone Shipments

Global Tablet Shipments

Global Sensor Markets

- Global Sensor Market will reach US \$154.4
 Billion by 2020 with a five-year compound annual growth rate (CAGR) of 10.1% (BCC Research)
- Global Microsensors Market (including MEMS, biochips and nanosensors) will reach US \$15.8 Billion by 2018 with CAGR) of 10.0 % (BCC Research)
- Global Smart Sensors Market to reach US \$6.7 Billion by 2017 (Global Industry Analysts, Inc.)
- European Smart Sensors Market expected to grow up to US \$2,402.15 million till 2018 with a CAGR of 39.90 %.

Application Market Niche

Smartphone and Tablets Sensors Market will rise to US \$6.5 billion in 2018 (*IHS*)

 Combo-sensor Market will growth to 1.5 Billion EUR by 2016

International Frequency Sensor Association • www.sensorsportal.com

Smartphone Sensors Classification

Digital Sensors

- Number of physical phenomenon, on the basis of which direct conversion sensors with digital outputs can be designed, is essentially limited
- Angular-position encoders and cantilever-based accelerometers – examples of digital sensors of direct conversion
- There are not any nature phenomenon with discrete performances changing under pressure, temperature, etc.

Angular-Position Encoder

decimaal	Gray-code
0	0000
1	0001
2	0011
3	0010
4	0110
5	0111
6	0101
7	0100
8	1100
9	1101
10	1111
11	1110
enz.	enz.

Digital Accelerometer

Toshihiro Itoh, Takeshi Kobayashi, Hironao Okada, A Digital Output Piezoelectric Accelerometer for Ultra-low Power Wireless Sensor Node, in *Proceedings of IEEE Sensors 2008*, 26-29 October 2008, Lecce, Italy, pp.542-545.

6-Axis Motion Processing Solution (I)

celera

simplify, go faster!

6-Axis Motion Processing Solution (II)

Modern Challenges

Introduction: Markets and Definitions
 Modern Challenges
 Sensor Systems Design: Introduction
 Advanced Sensor Systems Design
 Sensors Systems Examples
 The Future and Summary

Technological Limitations

- Below the 100 nm technology processes the design of analog and mixed-signal circuits becomes essentially more difficult
- Long development time, risk, cost, low yield rate and the need for very high volumes
- The limitation is not only an increased design effort but also a growing power consumption
- However, digital circuits becomes faster, smaller, and less power hungry

Signal- and Data Processing Limitations

- Sensor Fusion is a complex procedure deals with analog signals
- Only limited number of sensing elements can be integrated into a combosensors

Sensor Types Divided According to Outputs

International Frequency Sensor Association (IFSA), Study, 2014

Analog and Quasi-Digital Sensors

Analog sensor - sensor based on the usage of an amplitude modulation of electromagnetic processes

Quasi-digital sensors are discrete frequency-time domain sensors with frequency, period, duty-cycle, time interval, pulse number or phase shift output

Quasi-digital sensors combine a simplicity and universatility that is inherent to analog devices and accuracy and noise immunity, proper to sensors with digital output

Voltage output vs. Frequency Output

Quasi-Digital Sensors

Quasi-digital sensor is a sensor with frequency, period, its ratio or difference, frequency deviation, duty-cycle (or duty-off factor), time interval, pulse width (or space) pulse number, PWM or phase shift output.

Quasi-Digital Sensors: Types

International Frequency Sensor Association (IFSA), Study 2014

Informative Parameters

- Duty-cycle: D.C.= t_p/T_x
- Duty-off factor: $1/D.C. = T_x/t_p$
- PWM signal: t_s/t_p ratio at T_x = constant

Digital Output Sensors

- Serial interfaces RS232/485/422, USB
- Parallel interfaces (8-, 16-, 32-bits)
- Sensor buses: SPI, I2C, CAN, SMBus, LIN, etc.

1011100101 Binary code

Frequency Advantages

- High Noise Immunity
- High Power Signal
- Wide Dynamic Range
- High Reference Accuracy
- Simple Interfacing
- Simple Integration and Coding
- Multiparametricity

Sensor Systems Design: Introduction

Introduction: Markets and Definitions
 Modern Challenges
 Sensor Systems Design: Introduction
 Advanced Sensor Systems Design
 Sensors Systems Examples

6 The Future and Summary

Smart Sensors Design

Quasi-Digital Sensor Classification

x(t)–measurand; F(t)–frequency; V(t)–voltage, proportional to the measurand; P(t)–parameter

Quasi-Digital and Digital Sensors in System Hierarchy

Quasi-Digital Sensors: Summary

- There are many quasi-digital sensors and transducers for any physical and chemical, electrical and non electrical quantities
- Various frequency-time parameters of signals are used as informative parameters: f_x , T_x , *D.C.*, *PWM*, *T*, φ_x , etc.
- The frequency range is very broad: from some parts of Hz to some MHz
- Relative error up to 0.01% and better

Advanced Sensor Systems Design

Introduction: Markets and Definitions
 Modern Challenges
 Sensor Systems Design: Introduction
 Advanced Sensor Systems Design
 Sensors Systems Examples
 The Future and Summary

USTI-MOB

- Can measure all frequency-time parameters of signal
- Low relative error up ±0.0009 %
- Wide frequency range: 0.25 Hz to 1.95 (31) MHz
- I2C, SPI and RS232 interfaces
- 2-channel + sensing element
- Supply voltage: 1.8 V
- Active supply current < 0.85 mA</p>
- Packages: 5 x 5 mm MLF package (4 x 4 mm is coming), TQFP, PDIP

USTI-MOB Features

- Based on four patented methods for frequency, period, duty-cycle and phase shift measurements
- Constant relative error in all frequency range of measurements
- Non redundant conversion time
- Scalable resolution

USTI-MOB's Measuring Modes

- Frequency, f_x, [Hz]
- Period, T_X [s]
- Phase shift, φ_X [⁰]
- Time interval between start and stop-pulse [s],
- Duty-cycle, D.C. and Duty-off factor, Q
- Frequency $f_{\chi_1} f_{\chi_2}$ [Hz] and period $T_{\chi_1} T_{\chi_2}$ [s] difference
- Frequency f_{χ_1}/f_{χ_2} and period $T_{\chi_1/}T_{\chi_2}$ ratio
- Rotational speed, n_x[rpm]
- Pulse width, t_p and Space interval, t_s [s]
- Pulse number (events) counting, N_X
- Frequency deviation absolute DA [Hz] and relative DR [%]
- Resistance, $R_x[\Omega]$
- Capacitance, C_x[F]
- Resistive bridges, B_x
- Generating mode 2 MHz

USTI-MOB Block Diagram

Comparison Performances of USTI-MOB and USTI

Parameter	USTI-MOB	USTI
Programmable relative error, %	±(10. 0009)	±(10.0005)
Frequency range of measurement, Hz	0.25 1.95×10 ⁶	0.05 9×10 ⁶
Reference frequency, MHz	4	20
Generating mode, MHz	2	10
Supply voltage, V	1.8	5.0
Current consumption (active mode), mA	0.85	11
Operation temperature range, ⁰ C	-40 +85	-40 +85

USTI-MOB Evaluation Board Prototype

Evaluation Board's Circuit Diagram

USTI RS232 Interface (Master)

USTI RS232 Interface (Slave)

USTI I²C Interface

USTI SPI Interface

Software (Terminal V1.9b)

A Terminal ¥1.9b - 20040204 - by Br@y++		
Connect C 00M Port Baud rate C 0 Port C 00M		
Settings Connect Time custom BR Faclear ASCITable CTS DSR CD RI		
Receive CleAR Reset Counter 83 Counter = 34 C HEX StartLog StopLog	Dec 🗖 I	Hex 🔲 Bin
t f+2B6 ≥8 ≥8 >7 6250.042184125269 ≥8 >7 1000000.674946004319 > >	×	
Transmit		
→ Send		
t Transmit Macros	Mi Mi Mi	1 1000 ♀ □ 2 1000 ♀ □ 3 1000 ♀ □

USTI-MOB Calibration Procedure

>T >F200010.82 >F 200010.82

- ; set the IC into the calibration mode
- ; correction command
- ; check the correction value in the IC
- ; returned correction factor

Temperature Drift Calibration

- The USTI-MOB is working in the industrial temperature range: – 40° C...+ 85° C
- Temperature drift error can be eliminated by the calibration in an appropriate working temperature ranges

No Calibrate If:

- Relative error of measurement > ±0.026 %
- Use a precision temperature-compensated integrated generator with ±1 ppm frequency stability over the -40°C to +85°C
- In this case a custom designed USTI-MOB should be ordered

Experimental Set-up: f_{x_i} T_{x_i} t_{x_i} **its Ratio and Difference**

xcelera

simplify, go faster!

Measuring Equipment

Results of 10 Hz Measurements

Results of 100 Hz Measurements

Results of 1.95 MHz Measurements

Frequency (Period) Ratio Measurement: f_{x1}/f_{x2} (T_{x1}/T_{x2})

Pulse Width Measurement, t_x

① Π 50% АС 1МΩ 5V	
CH 1 Pos Pulse Width +100.000 112u	Gate
Mean: +100.000 104usec	Max: +100.000 336usec
StdDev: +26psec	Min: +99.999 902usec
Count: 16 989	Pk to Pk: +435psec
Math	Math On
Statistics Off On	Reset Stats

Experimental Set-up for Phase Angle Measurements, φ_x

Measuring Equipment for φ_x Measurement

Rectangular Waveform Signals (120° φ_x at 1 kHz)

Phase Shift Measurement Absolute Error at 10 Hz and 100 Hz

∆o, degree

o, degree

Phase Shift Measurement Absolute Error at 1 kHz and 4 kHz

∆o_x, degree

Sine Waveform Signals (90° ϕ_x at 100 Hz)

Phase Shift Measurement Absolute Error at 100 Hz and 1 kHz

∆o_x, degree

ox, degree

Maximum Absolute Errors

Waveform	Frequency, Hz	Max. Absolute Error, ^o
Sine	100	± 0.17
	1 000	± 0.8
Rectangular	10	± 0.008
	100	± 0.06
	1 000	± 0.7
	4 000	± 2.3

Commands for RS232, I2C and SPI Interfaces

- M02 ; Select phase shift measurement mode
- S ; Start measurement
- C ; Check result status: 'r' if ready or 'b if busy
- R ; Get result in BCD ASCII format

<06><02>; Select phase shift measurement mode

- <09> ; Start measurement
- <03> ; Check result status: '0' if ready or not '0' if busy
- <07> ; Get measurement result in BCD format

<06><02>; Select phase shift measurement mode

<09> ; Start measurement

<03><FF> ; Check result status: '0' if ready or not '0' if busy <07><FF> ; Get measurement result in BCD format

Duty-Cycle and PWM Signal

Duty-Cycle Measurement at 100 kHz and 500 Hz

CH 1 Pos Duty Cycle 50.00 Pct		Gate
Mean: 50.00 Pct	Max: 50.00 Pct	
StdDev: 0.00 Pct	Min: 50.00 Pct	
Count: 7 472	Pk to Pk: 0.00 Pct	
Math		Math On
Statistics Off On		Reset Stats

Duty-cycle Values vs. Frequencies

Frequency, kHz	Duty-cycle, %
< 0.5	1 99.3
1	1.5 98
10	15 80
20	30 71
30	46 60
> 40	50

Multisensor System for Smartphones and Tablets

Analog Sensors Interfacing

Measurement Time Calculation

$$T_{meas} = t_{conv} + t_{comm} + t_{calc}$$

$$\begin{cases} t_{conv} = \frac{1}{f_x} & if \quad \frac{N_{\delta}}{f_0} \prec T_x \\ t_{conv} = \frac{N_{\delta}}{f_0} + (0 \div T_x) & if \quad \frac{N_{\delta}}{f_0} \ge T_x \end{cases}$$

where $N\delta = 1/\delta$ is the number proportional to the required programmable relative error δ

The calculation time depends on operands and is as usually $t_{calc} \le 20 \text{ ms}$

Communication Time

• For RS232 interface: $t_{comm} = 10 \cdot n \cdot t_{bit}$

where $t_{bit} = 1/300, 1/600, 1/1200, 1/2400, 1/4800, 1/9600, 1/14400, 1/19200, 1/28800, 1/38400 or 1/76800 is the time for one bit transmitting;$ *n*is the number of bytes (*n*= 13÷24 for ASCII format).

• For SPI interface:
$$t_{comm} = 8 \cdot n \cdot \frac{1}{f_{SCLK}}$$

where fSCLK = 28 kHz is the serial clock frequency; $n=12\div13$ is the number of bytes: for BCD (n=13) or binary (n=12) formats

• For I²C interface:
$$t_{comm} = 8 \cdot n \cdot \frac{1}{f_{SCL}}$$

where $f_{SCL=} 20$ kHz is the serial clock frequency $n=12\div13$ is the number of bytes for measurement result: BCD (n = 13) or binary (n=12).

Dependence of t_{conv} ($\delta_{x'}$, f_x) in the frequency range from 0.5 to 1 MHz

Sensors Systems Examples

- Introduction: Markets and Definitions
- 2 Modern Challenges
- **B** Sensor Systems Design: Introduction
- 4 Advanced Sensor Systems Design
- Sensors Systems Examples
- **6** The Future and Summary

Smartphone based Weather Station

Commands for USTI-MOB (I2C Interface)

<06><00>	; Frequency measurement in the 1 st channel (humidity)
<02><02>	; Set up the conversion error 0.25 %
<09>	; Start a measurement
<03>	; Check result status: '0' if ready or not '0' if busy
<07>	; Get result in BCD format
<06><14>	; Duty-cycle measurement in the 2nd channel (temperature
<09>	; Start a measurement
<03>	; Check result status: '0' if ready or not '0' if busy
<07>	; Get result in BCD format
<06><12>	; Resistance-bridge B _x measurement mode (pressure)
<10><13>	; Set the charging time 20 ms
<09>	; Start measurement
<03>	; Check result status: '0' if ready or not '0' if busy
<07>	; Read conversion result

Measuring Channel

Relative Error's Components:

 $\begin{array}{cccc} \pm \delta_{s}, \ \% & \\ \pm \delta_{\text{VFC}}, \ \% & \\ \pm \delta_{o}, \ \% \ \text{- quantization error} \\ \pm \delta_{o}, \ \% \ \text{- reference error} \end{array}$

Main considerations:

- USTI-MOB's relative error (δ_q) must be in one order less (or at the lease in 5 times less than the sensor's error)
- The reference error for calibrated USTI-MOB is δ_0 =±0.00001 %

Low Power Consumption Temperature Sensor Systems

Accelerometer Sensor Systems

Commands for RS232 Interface

- M04 ; Select duty-cycle measurement mode
- S ; Start measurement
- C ; Check result status: 'r' if ready or 'b if busy
- R ; Get result in BCD ASCII format

Barometric Pressure Sensor (I)

Barometric Pressure Sensor (II)

USTI-MOB Custom Design

- Extended functionality
- New measuring modes
- Customized units of measurements
- Improved metrological performance and communication interfaces

The Future

USTI-WSN

- ASIC or IC
- SoC/SiP

USTI-WSN

USTLINST

- Includes RF-CMOS 2.4 GHz radio transceiver
- IEEE 802.15.4, ZigBee, IPv6/6LoWPAN, RF4CE, SP100, WirelessHART and ISM applications
- Supply voltage is 1.8 V
- Current consumption is less than 18.8 mA in active mode
- 64-pad QFN package

Traditional Approach

- Analog sensors with voltage or current outputs
- Analog multiplexer
- Multichannel ADC

Sensor Node Interface

A. Bayo, N. Medrano, B. Calvo, S. Celma, A Programmable Sensor Conditioning Interface for Low-Power Applications, *Proc. of the Eurosensors XXIV*, 5-8 September, 2010, Linz, Austria, Procedia Engineering, Vol. 5, 2010, pp. 53–56.

Wireless Telemetry Pulse Acquisition Module T24-PA

- Frequency range: 0.5 Hz ... 3 kHz
 Relative error: 0.15 % ...0.25 %
- Frequency, time and RPM measuring modes

Pulse-to-Wireless Converters

Sensor Node Architecture

- Sensing Sub-system
- Processing Sub-system
- Communication Sub-system
- Power Management Sub-system

Sensor Node Architecture

Sensing Sub-system

- Processing Sub-system
- Communication Sub-system
- Power Management Sub-system

Node on Chip

Comparative Performances

Devenuetor			
Parameter	T24-PA	USTI-MOB IC	
Relative error, %	0.15 0.25	0.0009	
Frequency Range, Hz	0.5 3 000	0.25 1 950 000	
Min.Time interval, s	333E-06 2	10E-06 250	
RPM range (presuming 1 pulse/rev), rpm	30 180 000	3 unlimited	
Active Supply Current, mA	35	0.85	

Price Comparison

ICs	Manufacturers	Price, \$ US (in quantities of 1, 000)
ADS1278, 24-bit, 8 channels, SPI	Texas Instruments	23.95
USTI-MOB, 3 channels, SPI, I2C, RS232 + any digital multiplexer (8 channels or more)	Excelera, S.L.	16.95
	Saving:	23.95-16.95 = 7.00

Series of UFDC and USTI ICs

Universal Sensors and Transducer Interface (USTI)

USTI-EXT for Auto, Aerospace & Defense applications

Evaluation boards

Universal Frequency-to-Digital Converter (UFDC-1 & 1M-16)

USTI MOB for ultra-low power applications

Current Consumption Comparison

IC	Active Supply Current, mA
USTI-MOB	0.85
USTI	11
USTI-EXT	11
USTI-WSN *	~ 18.8
UFDC-1-16	20
UFDC-1	20

* - coming soon

Conclusions

- Quasi-digital sensors and digital sensors on its basis are more attractive for mobile devices and IoT because of they let to eliminate current technological limitations
- Proposed advanced design approach lets significantly increase a sensor system integration level and metrological performance
- A lot of different sensors can be integrated by the same way in any mobile devices and IoT without complex sensor fusion algorithms

Reading and Practice

http://www.sensorsportal.com/HTML/BOOKSTORE/Digital_Sensors.htm

Contact Information

Excelera, S.L. Parc UPC-PMT, Edifici RDIT-K2M C/ Esteve Terradas, 1 08860 Castelldefels, Barcelona, Spain Tel.: +34 93 413 79 41 E-mail: SYurish@excelera.io Web: http://www.excelera.io

Questions & Answers

