
Security issues for the IoT
dealing with Mobile Payments
and Secure Element for Objects

Pascal.Urien@Telecom-ParisTech.fr

CoFounder of the Ethertrust Company

Venezia, Italy, October 9th 2016

1 Pascal Urien

Part One: Mobile Payments

2 Pascal Urien

Background

3 Pascal Urien

Smartcard Genesis
• 1980, First BO’ French bank card, from CP8
• 1988, SIM card specification
• 1990, First ISO7816 standards
• 1991, First SIM devices
• 1995, First EMV standards
• 1997, First Javacard

– The javacard is a subset of the java language
– Patent US 6,308,317

• 1998, JCOP (IBM JC/OP)
• 1999, Global Platform (GP)
• 2002, First USIM cards

EEPROM

RAM

R

O

M
CPU

1988, the 21 (BO’) chip

Siemens (SIM) chip, 1997 4 Pascal Urien

What is a Secure Element ?

OS JAVACARD JCOP
GP (Global Platform)
ROM 160 KB
EEPROM 72 KB
RAM 4KB
Crypto-processor
3xDES, AES, RSA, ECC
Certification CC (Common Criteria) EAL5+
Security Certificates EMVCo

A Secure Element (SE) is a Secure Microcontroller, equipped with host interfaces
such as ISO7816, SPI or I2C .

EXAMPLE: NXP PN532

5 Pascal Urien

NFC Genesis
• 1994, Mifare 1K

– In 2011 Mifare chips represent 70% of the transport market.

• 2001, ISO 14443 Standards (13,56 MHz)
– Type A (Mifare)
– Type B
– Type F (Felica)

• 2004, NFC Forum
– Mifare (NXP), ISO14443A, ISO14443B, Felica (Sony)
– Three functional modes :

• Reader/Writer, Card Emulation, Peer to Peer

• NFC controllers realize NFC modes

6 Pascal Urien

From ISO 7816 to ISO 14443
• The basic idea of Wi-Fi design was Wireless Ethernet.
• The basic idea of ISO 14443 design was Wireless (ISO 7816)

Smartcard.
– Contrary to IEEE 802.11 there is no security features at the

radio frame level.

ISO 7816
Contact Mode

ISO 14443
Contactless Mode

V= 2 π fc S µo H

H = 5 A/m
fc= 13,56 MHz
S= 40.10-4

V= 2,2V

READER

7 Pascal Urien

About Inductive Coupling

Φ1 L1 M i1
 =
Φ2 L2 M i2

Neumann formula

The Energy is conservative, i.e.
The Energy delivered by the primary circuit PPRI = i1 . (M ω i2),
is equal to the energy consumed by the secondary circuit PSEC = i2 . (M ω i1).

Primary Circuit Secondary Circuit

No energy propagation,
implies vicinity proof.

8 Pascal Urien

Propagation Po S /4πd2 e
-d/λ

Po

d

S

9 Pascal Urien

Secure Elements Market

10 Pascal Urien

NFC Standards Overview

ISO 14443-2A
ISO 14443-3A

14443
-2B

14443
-3B

ISO 14443-2A
ISO 14443-3A

FELICA

ISO 14443-4 NFCIP-1 NFCIP-1
NFCIP-1

LLCP

SNEP

NDEF

Passive Mode
Active Mode

*ISO/IEC_18092 standard and NFCIP-1 standards are similar
DEP: Data Exchange Protocol

DEP

NFC-SEC

11 Pascal Urien

SIM-Centric Legacy Paradigm

12 Pascal Urien

HID NFC White Paper: SIM Centric Services

- Payment
- Access Control
- Transport

Trusted
Service
Manager

13 Pascal Urien

Cloud of Secure Elements
• Remote use

of Secure
Elements
hosted in the
cloud
through
secure TLS
channel

14 Pascal Urien

About TLS Stack for
Secure Element

User’s
Certificate

CA
Certificate

RSA Private Key

TLS Stack

TLS Sessions

INTERNET

CLOUD RESOURCES

5
 m

m

Get-KeysBlock
Get-CipherSuite

JAVA VIRTUAL
MACHINE

15 Pascal Urien

US payment cards market
2011: 21 trillion $

About Mobile Payments

16 Pascal Urien

Some Figures
• According to the French national bank ("Banque de France"), the France gross domestic

product (GDP) was about 1900 billion € in 2013.
• The global amount of financial transactions was about 27 000 billion €.
• 1,7% of these operations were performed with bank cards (leading to about 450 billion

€).
• Nine billion of card transactions were performed in 2013, with an average value of 50€.
• The number of payment cards in France was about 86 million, more than the

population.
• In France in 2015

– About 0,025 billion of NFC payment operations
– 10 € in average
– 0,25 billion €
– 0,05 % of payment card transactions

17 Pascal Urien

About the EMV Payment Four Corner
Architecture

Credit Card Network

ACQUIRER Bank
Merchant Account

Merchant Bank
Payment Processor

ISSUER Bank
Card Issuer

Payment
 terminal
 EMV Card

CHIP

18 Pascal Urien

A typical EMV transaction comprises
five steps

 • 1) Selection of the PPSE (Proximity Payment Systems Environment)
application, which gives the list of embedded payment EMV
applications identified by their AID.

• 2) Selection of an EMV payment application.
• 3) Reading of the application capacities, thanks to the GPO (Get

Processing Options) command, which also returned the structure of
embedded information organized according to a records/files scheme.

• 4) Reading of records and files via the ReadRecord command.
Certificates are checked and a DDA procedure may be used as non
cloning proof.

• 5) Generation of payment cryptograms, triggered by GenerateAC or
CDA commands.

19 Pascal Urien

Legacy EMV
• According to iso7816 standards EMV applications are identified by

AID (Application IDentifier) attributes, 16 bytes at the most.
• An EMV application embeds an index of a certification authority (such

as VISA or MasterCard), an issuer certificate signed by the CA, and an
ICC (integrated circuit card) certificate delivered (and signed) by the
issuer.

• The ICC certificate authenticates most of information stored within
the EMV application (PAN, bearer's name, validity dates...), encoded
according to the ASN.1 syntax.

• An ICC private RSA key is available and used for non cloning proof,
thanks to a dedicated command called DDA (Dynamic Data
Authentication), in which a 32 bits random is encrypted by the ICC
private key.

20 Pascal Urien

Legacy EMV
• Financial transactions are associated with cryptogam

generation based on symmetric 3xDES cryptographic
algorithm.

• One or two dedicated commands (GenerateAC) are
required by a payment operation, whose input
parameters include, among others, the amount and the
date.

• DDA and GenerateAC may be combined in a single
procedure called CDA (Combined Dynamic
Authentication).

21 Pascal Urien

EMV ISO7816 main commands

EMV
Iso7816 request

Binary (hexadecimal) Encoding
CLA INS P1 P2 P3

SELECT AID 00 A4 04 00 P3=AID-length AID
GetProcessingOptions 80 A8 00 00 P3=parameters-length

ReadRecord 00 B2 P1 P2 00
P1=record number

(P2-4)/8 = file number (FSI)
GenerateAC 80 AE P1 00 P3=parameters length

P1= type of cryptogram

22 Pascal Urien

PayPass Mag Stripe (PMS)
• PMS is an adaptation of EMV standards to magnetic stripe.
• It generates a dynamic Card Validation Code (named CVC3).
• A PayPass transaction comprises the five following operations:

– 1) Selection of the PPSE application.
– 2) Selection of the PayPass application.
– 3) Issuance of the GPO command.
– 4) Reading of the record one, file one, which contains the track1 and track 2

equivalent data
– 5) Issuance of the Compute Cryptographic Checksum (CCC) iso7816 request,

including an unpredictable number. The PayPass application returns the CVC3
value.

• Contrary to EMV the PMS profile does not embed certificates or RSA private
key. Thanks to CVC3 it is compatible with legacy magnetic card networks.

23 Pascal Urien

The
Google
Wallet 2
(2012)

Acquirer’s Bank

Customer’s
Issuer Bank

MasterCard

Google
Virtual
prepaid
 card

Card
Network

Google
Issuer

Google
Acquirer

Customer‘s
Cards

Card Not Present transaction (CNP)

Cloud of PVC
Bank Cards

24 Pascal Urien

Google PrePaid Card Transaction
// SELECT 2PAY.SYS.DDF01
>> 00A404000E325041592E5359532E4444463031
<< 6F2C840E325041592E5359532E4444463031A51ABF0C1761154F10A000000004
1010AA54303200FF01FFFF8701019000

6F File Control Information (FCI) Template
 84 Dedicated File (DF) Name
 325041592E5359532E4444463031
 A5 File Control Information (FCI) Proprietary Template
 BF0C File Control Information (FCI) Issuer Discretionary Data
 61 Application Template
 4F Application Identifier (AID) – card
 A0000000041010AA54303200FF01FFFF
 87 Application Priority Indicator
 01

 25 Pascal Urien

Google PrePaid Card Transaction
// Select MasterCard Google Prepaid Card
>> 00A4040010A0000000041010AA54303200FF01FFFF
<<

6F208410A0000000041010AA54303200FF01FFFFA50C500A4D617374657243617
2649000

6F File Control Information (FCI) Template
 84 Dedicated File (DF) Name
 A0000000041010AA54303200FF01FFFF
 A5 File Control Information (FCI) Proprietary Template
 50 Application Label
 M a s t e r C a r d

26 Pascal Urien

Google PrePaid
Card Transaction

// Get Processing Options
>> 80A80000028300
<< 770A 8202 0000 9404 08010100 9 000
AIP=0000 AFI= 08010100

// Reader Record one File one
>> 00B2010C00
<< 706A9F6C0200019F62060000000000389F63060000000003C64 5629 235343330
3939393930393937393939395E202F5E31373131313031303031303030303030
303030309F6401049F650200389F660203C6 9F6B13 5430 999909979999 D 1711 1
01 0010000000000F 9F670104 9000

// COMPUTE Cryptographic Checksum (CVC3)
>> 802A8E8004 00000080
<< 770F9F6102 0038 9F6002 0038 9F3602 0012 9000

Track 1 data

Track 2 data

CVC3 Track 2 CVC3 Track 1 ATC

PAN= 999909979999

Validity Date= 1711

27 Pascal Urien

VISA MSD
• VISA VCPS (Visa Contactless Payment Specification) MSD (Magnetic Stripe Data),

is an adaptation of EMV standards to magnetic stripe for contactless payments.
• It generates a dynamic Card Verification Value (dCVV, a three digits code) based

on a 3xDES (112 bits) secret key.
• A VISA MSD transaction comprises the four following operations:

– 1) Selection of the PPSE application.
– 2) Selection of the VISA MSD application.
– 3) Sending of the GPO command with payment attributes (amount, date...).
– 4) Reading of the record one, file one, which contains the track 2 equivalent data.

This file includes a dCVV computed after the previous GPO.

• Contrary to EMV the VISA MSD profile does not embedded certificate or RSA
private key. Thanks to dCVV it is compatible with legacy magnetic card networks.

28 Pascal Urien

Apple Pay
Select PPSE
00A404000E 325041592E5359532E4444463031
6F 23 […] 9000
6F File Control Information (FCI) Template
 84 Dedicated File (DF) Name
 325041592E5359532E4444463031
 A5 File Control Information (FCI) Proprietary Template
 BF0C File Control Information (FCI) Issuer Discretionary Data
 61 Application Template
 4F Application Identifier (AID) – card
 A0000000031010
 87 Application Priority Indicator
 01

29 Pascal Urien

Apple Pay
Select VISA MSD
00A4040007 A0000000031010
6F 39 […] 9000
6F File Control Information (FCI) Template
 84 Dedicated File (DF) Name
 A0000000031010
 A5 File Control Information (FCI) Proprietary Template
 9F38 Processing Options Data Object List (PDOL)
 9F6604 9F0206 9F0306 9F1A02 9505 5F2A02 9A03 9C01 9F3704 9F4E14
 BF0C File Control Information (FCI) Issuer Discretionary Data
 9F4D Log Entry
 1401
 9F5A Unknown tag
 1108400840

30 Pascal Urien

Apple Pay
GPO
80 A8 00 00 37 83 35 [...]
83 35

86 00 00 80
00 00 00 00 00 01
00 00 00 00 00 00
04 80
00 00 00 00 00
04 80
14 08 18
01
4A 94 57 1A
00

80 06 00 80 08 01 01 00 9000
AIP = 0080 , MSD mode
AFL = 08010100, one record one file

31 Pascal Urien

Apple Pay
//Read Record 1 file 1
00 B2 01 0C 00

701A 57 13 40 71 23 13 11 22 33 44 D2 00 32 01 00 00 05 09 00 02 5F 5F 20

02 20 2F 90 00

70 EMV Proprietary Template
 57 Track 2 Equivalent Data
 407123131122334 4D 2003 201 0 0000 509 00025 F
 5F20 Cardholder Name
 /

DAN dCVV

32 Pascal Urien

EMV //Select PPSE

00A404000E325041592E5359532E444446303100

6F23840E325041592E5359532E4444463031A511BF0C0E610C4F07A00000000

410108701019000

6F File Control Information (FCI) Template

 84 Dedicated File (DF) Name

 325041592E5359532E4444463031

 A5 File Control Information (FCI) Proprietary Template

 BF0C File Control Information (FCI) Issuer Discretionary Data

 61 Application Template

 4F Application Identifier (AID) – card

 A0000000041010

 87 Application Priority Indicator

 01
33 Pascal Urien

// Select Master Card

>> 00A4040007A000000004101000

<< 6F388407A0000000041010A52D500A4D6173746572436172648701015F2D0266

729F1101019F120A4D617374657263617264BF0C059F4D020B0A9000

EMV

34 Pascal Urien

6F File Control Information (FCI) Template

 84 Dedicated File (DF) Name

 A0000000041010

 A5 File Control Information (FCI) Proprietary Template

 50 Application Label

 M a s t e r C a r d

 87 Application Priority Indicator

 01

 5F2D Language Preference

 f r

 9F11 Issuer Code Table Index

 01

 9F12 Application Preferred Name

 M a s t e r c a r d

 BF0C File Control Information (FCI) Issuer Discretionary Data

 9F4D Log Entry

 0B0A

EMV

35 Pascal Urien

GPO

80A8000002830000

7716 8202 1980 9410 08010100100101011801020020010100 9000

77 Response Message Template Format 2

 82 Application Interchange Profile

 94 Application File Locator (AFL)

82 (AIP - Application Interchange Profile)

1000 (Byte 1 Bit 5) Cardholder verification is supported

0800 (Byte 1 Bit 4) Terminal risk management is to be performed

0100 (Byte 1 Bit 1) CDA supported

0080 (Byte 2 Bit 8) EMV and Magstripe Modes Supported

94 (AFL - Application File Locator)

List of records that should be read by the terminal.

Each record is identified by the pair (SFI - short file indicator, record number)

SFI 1 record 1, SFI 2 record 1, SFI 3 records 1-2, SFI 4 record 1

EMV

36 Pascal Urien

EMV
Records
and Files
Reading

37

P1=record number, (P2-4)/8 = file number (SFI)

// read record 1, file 1

00 B2 01 0C 00

// read record 1, file 2

00 B2 01 14 00

// read record 1, file 3

00 B2 01 1C 00

// Read record 2, file 1

00 B2 02 1C 00

// Read record 1 file 4

00 B2 01 24 00
Pascal Urien

EMV Certificate Chain

38 Pascal Urien

// P1= Generate TC (01xx) + CDA signature Request (xxx1)= 50

80AE50002B 0000000006290 000000000000 250 0000000000 0978 150610 00 90B4

E0D2 25 0000 0000000000000000 1F0302 00

000000000690 Amount

000000000000 Cashback

250 Country Code

0000000000 Terminal Verfication Result

0978 Currency code

150610 Transaction Date

00 Transaction Type

90B4E0D2 Unpredictable Number

25 Terminal type

0000 Data Authentication Code

0000000000000000 ICC Dynamic Number

1F0302 Cardholder Verification Method

00 LE

//CDOL1 tag 8C

9F0206 9F0306 9F1A02 9505 5F2A02 9A03 9C01 9F3704 9F3501 9F4502 9F4C08 9F3403

EMV

39 Pascal Urien

7781 91

9F27 01 80 Cryptogram Information Data

9F36 02 001F Application Transaction Counter

9F4B 70 Signed Dynamic Application Data

 9E92DE44738A7C5533D5E29A7A6D230A

 0E2123F3EE1DCD83C868551D4F01C1D2

 4979BBAA978F95589731C1CA73DA77DD

 80E3B49D7B0CEA3B4CFE711D021DA8F9

 4BE408C44EF614EB5F150FDDFE6DA8C8

 920E041F8401E3DE0D313EB15DC7C6C9

 DCD0279F4EF450D39F8CA12361065124

9F10 12 Issuer Application Data (optionnal)

 0F10

 A04003223000000000000000000000FF

9000

EMV
CDA

40 Pascal Urien

6a

 05 Signed Data Format

 01 Hash Algorithm Indicator

 26 ICC Dynamic Data Length (LDD)

 08 ICC Dynamic Number Length

 a1 bb 29 ce d6 89 95 7c ICC Dynamic Number

 80 Cryptogram Information Data

 ec e9 3c d4 a0 80 34 c8 TC

 09 a1 86 bd eb 56 60 ba 15 b2 b2 8d 9f 1c b2 e4 74 a6 8d 8c

 Transaction Data Hash Code

bb

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb Padding

 154fb6d9d774f5e6f7eef512b557eaf754c9c8f3bc Signature

EMV
CDA

41 Pascal Urien

signature= 154fb6d9d774f5e6f7eef512b557eaf754c9c8f3bc =sha1

 { 05012608a1bb29ced689957c80

 || ece93cd4a08034c8

 || 09a186bdeb5660ba15b2b28d9f1cb2e474a68d8c

 || 49 x bb (49 = 0x70 - 0x26 - 25)

 || 90B4E0D2 } // Unpredictable Number

Transaction Data Hash code = hash of

-The values of the data elements specified by, and in the order they appear in

the PDOL, and sent by the terminal in the GET PROCESSING OPTIONS

command

- The values of the data elements specified by, and in the order they appear in

the CDOL1, and sent by the terminal in the first GENERATE AC command.

- The tags, lengths, and values of the data elements returned by the ICC in the

response to the GENERATE AC command in the order they are returned, with

the exception of the Signed Dynamic Application Data.

EMV
CDA

42 Pascal Urien

Transaction Data Hash code= sha1 (

0000000006290000000000000250000000000009781506100090B4E0D2220000000

00000000000001F0302

 || 9F27 01 80

 || 9F36 02 001F

 || 9F10 12 0F10A04003223000000000000000000000FF)

 = 09 a1 86 bd eb 56 60 ba 15 b2 b2 8d 9f 1c b2 e4 74 a6 8d 8c

EMV
CDA

43 Pascal Urien

The SIMulation Project

44 Pascal Urien

45 Pascal Urien

Scope

• Remote use of Secure Elements hosted in the
Cloud through secure TLS channel

HCE

RACS

TLS

TCP

IP

NFC

46 Pascal Urien

Architecture
• Four Components

– Legacy payment terminal
– Android Mobile

• Host Card Emulation
• Mobile API for SIM interface

– SIM card
• Delivering a TLS stack

– Payment servers
• Built over RACS server and legacy payment card

47 Pascal Urien

APP
HCE-SIM

HCE

Mobile API

TLS-SE
API

RACS

Config

init

set
co

n
n

e
ct

CLOUD

tls.cap (javacard)

MobileAPI files
racs.com:port

seid

seid

racs.com:port

VirtualCard
(AID)

seid

48 Pascal Urien

RACS
• The idea is to put secure elements in the Cloud
• RACS works over TLS
• Splitting between Access Control (authorization) and Services

– The risks (Fraud…) are managed in two separate plans (access and
service)

– Remote resources are monitored

• Giving an identifier to a secure element in the cloud
– A WEB of Secure Elements
– RACS://Server.com:Port/SEID

49 Pascal Urien

Introducing RACS
• The RACS protocol is in the perspective of

these former experiments.
• It has been designed for efficient and

secure remote use of secure elements via
the internet.

• It also provides smartcard readers
virtualization, and therefore facilitates
secure elements deployment in
environments dealing with virtual
machines and cloud computing.

ISO7816
APDU

TLS

TCP

IP

50 Pascal Urien

RACS Uniform Resource Identifier
• RACS setups a secure (TLS) connection with a remote server, it

collects the list of hosted secure elements, and thereafter it powers
on a secure element, resets the device and exchanges APDU
requests and responses.

• RACS defines an URI (Uniform Resource Identifier), such as
• ServerName:Port/SEID

• It comprises the server name or IP address, the TCP port and a SE
identifier (the SEID).

• Therefore it creates a concept somewhat similar to a WEB of secure
elements, or a WEB of cryptographic procedures.

51 Pascal Urien

A PKI Infrastructure

• In order to perform strong mutual authentication both
RACS client and server are equipped with X509
certificates, dealing with asymmetric cryptography
(RSA or elliptic curves).

• The client SUBJECT attribute, more precisely the
Common Name (CN) field of this attribute identifies a
legitimate client, and is associated within the server to
an index UID, the user identifier.

52 Pascal Urien

How to
allocate

SEID

Key Diversification Data

Reader Serial Number

SIM-Server SlotID 725 53 Pascal Urien

RACS Commands
Command SEID Comment

BEGIN no First request command

END no Last Request command

GET-VERSION no Return current version

SET-VERSION no Set current version

ECHO no Request the server to perform an echo

LIST no Return the list of authorized secure

elements

SHUTDOWN yes Shutdown a secure element

POWERON yes Power on a secure element

RESET yes Reset a secure element

APDU yes Perform an ISO7816 request

54 Pascal Urien

RACS Requests and Responses

RESET POWERON

SHUTDOWN
APDU IO

LIST

SEID

55 Pascal Urien

APDU
Command

• No Script !

56 Pascal Urien

Security Policy
• Only users equipped with valid certificates successfully establish TLS

sessions.
• A user identifier (UID) is derived from the certificate Common Name (CN)

attribute.
• A TLS session is identified by a unique identifier (the SID).
• Every secure element has two states, unlocked and locked.

– The SHUTDOWN command forces the unlocked state; the POWERON
command switches the SE state from locked to unlocked.

– In the locked state the SE may be only used by the SID that previously locked
it.

• At the end of a TLS session all used SEs are unpowered and unlocked.

57 Pascal Urien

SEID Locking

Unlocked

Power Off
Locked(SID)

Power On

POWERON(SID)

SHUTDOWN(All-SID)

END Of TLS SESSION(SID)

POWERON

(Other-SID)

DENIED

58 Pascal Urien

Access Control

• The server manages two kinds of table:

– The Users-Table stores for each CN a list of
authorized SEIDs.

– Each SEID is linked to a SEID-Table storing for
every AID (embedded application) a list of
authorized CNs.

59 Pascal Urien

UID, SID, AID, Filter uid

sid sid

seid

aid

seid

aid

TLS

POWERON

SELECT

Filter Filter 60 Pascal Urien

Experimental
Platform

61 Pascal Urien

SEID files

Reader.txt file ReaderSN.txt file

ATR.txt File

CardSN.txt File
62 Pascal Urien

Access Control Files

Users.txt file

SEID.txt file

Filter.txt file 63 Pascal Urien

The Open MobileAPI
• The API defines a generic framework for the access to Secure Elements in a mobile environment. It is

based on four main objects.
• The SEService is the abstract representation of all SEs that are available for applications running in the

mobile phone.
• SEService seService = new SEService(this,this)
• public void serviceConnected(SEService service)
• seService.shutdown()

• The Reader is the logical interface with a Secure Element. It is an abstraction from electronics devices
which are needed for contact (ISO 7816) and contactless (ISO 14443) smartcards.

• Reader[] readers = seService.getReaders()

• The Session is opened and closed with a Reader. It establishes the logical path with the SE managed by
the Reader.

• Session session = readers[0].openSession()
• session.close() or readers[0].closeSessions()

• The Channel is associated with an application running in the SE and identified by an ID (the AID=
Application IDentifier)

• Channel channel = session.openLogicalChannel(aid)
• byte[] response channel.transmit(byte[] command)
• channel.close()

 64 Pascal Urien

OpenMobileAPI: The SIM File System

MF (3F00)

|-EF-DIR (2F00) --> reference to DF-PKCS#15

|

|-DF-PKCS Access Control Main File #15 (7F50)

 |-ODF (5031) --> reference to DODF

 |-DODF (5207) --> reference to EF-ACMain

 |-EF-ACMain (4200) --> reference to EF-ACRules

 |-EF-ACRules (4300) --> reference to EF-ACConditions

 |-EF-ACConditions1 (4310)

 |-EF-ACConditions2 (4311)

 |-EF-ACConditions3 (4312)

65 Pascal Urien

EF-ACRules
30 10

 A0 08 // aid

 04 06

 A0 00 00 01 51 01 // Application Identifier (AID)

 30 04

 04 02

 43 10 // EF-ACCondition File

30 10 A0 08 04 06 A0 00 00 01 51 02 30 04 04 02 43 11

30 10 A0 08 04 06 A0 00 00 01 51 03 30 04 04 02 43 11

30 08

 82 00 // other

 30 04

 04 02

 43 12 // file

FF FF FF 90 00

66 Pascal Urien

No access to any application

Tx: 00 A4 00 04 02 43 10 // Select AC-Conditions1
Rx: 61 20
Tx: 00 C0 00 00 12
Rx: 62 1E 82 02 41 21 83 02 43 10 A5 06 C0 01 00 DE 01 00 61 0E
Tx: 00 B0 00 00 00 // Read AC-Conditions1 - empty file, no access to any application
Rx: 6C 1E
Tx: 00 B0 00 00 1E
Rx: FF
FF 90 00

67 Pascal Urien

Access to a single application

Tx: 00 A4 00 04 02 43 11 // Select AC-Conditions2
Rx: 61 20
Tx: 00 C0 00 00 20
Rx: 62 1E 82 02 41 21 83 02 43 11 A5 06 C0 01 00 DE 01 00 8A 01
05 8B 03 6F 06 02 80 02 00 1E 88 00 90 00
Tx: 00 B0 00 00 00 // Read AC-Conditions2,
Rx: 6C 1E
Tx: 00 B0 00 00 1E
Rx: 30 16
 04 14
 11
// CertHash
 FF FF FF FF FF FF 90 00 68 Pascal Urien

Access by any application
Tx: 00 A4 00 04 02 43 12 // Select AC-Conditions3
Rx: 61 20
Tx: 00 C0 00 00 20
Rx: 62 1E 82 02 41 21 83 02 43 12 A5 06 C0 01 00 DE 01 00 8A 01 05 8B
03 6F 06 02 80 02 00 1E 88 00 90 00
Tx: 00 B0 00 00 00 // Read AC-Conditions3, access by any application
Rx: 6C 1E
Tx: 00 B0 00 00 1E
Rx: 30 00 // empty condition entry,
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 FF FF FF FF FF FF FF FF FF FF FF FF FF FF
 90 00

69 Pascal Urien

Host Card Emulation

LEGACY

Host Card Emulation

Google Nexus S

70 Pascal Urien

HCE Service

 <service

 android:name=".MyHostApduService"

 android:exported="true"

 android:permission="android.permission.BIND_NFC_SERVICE" >

 <intent-filter>

 <action android:name="android.nfc.cardemulation.action.HOST_APDU_SERVICE" />

 </intent-filter>

 <meta-data

 android:name="android.nfc.cardemulation.host_apdu_service"

 android:resource="@xml/apduservice" />

 </service>

71 Pascal Urien

HCE Service
<host-apdu-service

 xmlns:android= "http://schemas.android.com/apk/res/android"

 android:description="@string/servicedesc"

 android:requireDeviceUnlock="false" >

<aid-group

 android:category="other"

 android:description="@string/aiddescription" >

 <aid-filter android:name= "325041592E5359532E4444463031" />

 <aid-filter android:name= "a0000000041010aa54303200ff01ffff" />

</aid-group>

</host-apdu-service>

The HCE service implements two methods for NFC communication:

- public byte[] processCommandApdu(byte[] apdu, Bundle extras).

- public void sendResponseApdu(byte[] responseAPDU).

72 Pascal Urien

User’s Experience
Selection of

a bank card

Connection

to server
Ready for

payment

Fidelity Card

Reading

Payment

Transaction

73 Pascal Urien

About Virtual Fidelity Cards
• A virtual fidelity card is associated

with an application AID registered
with the payment application.

• The merchant terminal selects
this virtual card (via the dedicated
iso7816 SELECT command) before
the transaction.

• The returned information
includes a card number to which
the payment would be bound.

74 Pascal Urien

Legacy Timing
• A legacy contactless transaction consumes about 400ms,

and requires 8 ISO7816 requests, which are detailed below:
– Selection of the PPSE application.
– Selection of the NFC payment application.
– Issuance of the GPO command.
– Four ReadRecord commands used for collecting four files

located in two records.
– One GenerateAC request, realizing a CDA operation.

• About 50% of the transaction time (200 ms) is consumed by
the CDA computing.

75 Pascal Urien

Transparent
Mode

BEGIN ResetScript
SHUTDOWN SEID
POWERON SEID
END

APDU
BEGIN APDUScript
APDU
END

RACS Script
executed
after the
connection
to the server

RACS Script

Remote
Processing

SEID

RACS Server

TERMINAL

76 Pascal Urien

Transparent Mode

• In the transparent mode every iso7816
request is forwarded to the server

• What leads to an extra time cost of about
250ms (in average) per APDU

• Total duration is about 8x250+400= 2400ms.

77 Pascal Urien

BEGIN ResetScript
SHUTDOWN SEID
POWERON SEID
SELECT SEID AID
END

SELECT PPSE
SELECT AID
GPO
READ-RECORD(s)

GENERATE-AC

BEGIN CdaScript
APDU [GPO]
APDU [GENERATE-AC]
END

RACS Script
executed
after the
connection
to the server

RACS Script executed
for cryptographic
(CDA) computing Local

Processing

SEID

RACS Server

TERMINAL

Cache
Mode

78 Pascal Urien

Cache Mode
• The mobile application manages a cache; the seven first iso7816 requests,

which return static information, are locally processed by the smartphone.
• Each operation needs about 30ms; therefore seven APDUs cost 210ms,

which is nearly equivalent to the legacy transaction.
• The last request (GenerateAC) is forwarded to the remote server, which

implies a delay ranging between 350 and 650 ms, according to the
following repartition:
– 200 ms are burnt by the remote CDA operation
– 100-250 ms are spent by the platform components (mobile phone, server

operating system and network components)
– 50-200 ms are consumed by the latency of 3G/4G cellular network.

• Total: 560-860ms

79 Pascal Urien

Part II – Secure Elements For
Object

80 Pascal Urien

About the Internet of Things (IoT)
• Pretz, K. (2013). “The Next Evolution of the

Internet”

The Internet of Things (IoT) is a

network of connected things.

81 Pascal Urien

Beyond The Horizon
• The IoT is the death of the Moore Law.
• Waldrop M. "More Than Moore", Nature February 2016

Vol 530
– The semiconductor industry will soon abandon its pursuit of

Moore’s Law.

• "Rebooting the IT Revolution: A Call to Action" (SIA/SRC),
2015
– "Security is projected to become an even bigger challenge in the

future as the number of interconnected devices increases... In
fact, the Internet of Things can be viewed as the largest and
most poorly defended cyber attack surface conceived by
mankind"

82 Pascal Urien

Trillion Sensors

• In current mainstream systems, the lower-edge
system-level energy per one bit *transition is ~10-14
J, which is referred as the "benchmark".

*W= ½ Nq x V

q = 1,6 10-19

10-14 J == 125,000 electrons

Towards

Cyber

Physical

Systems

(CPS)

83 Pascal Urien

Internet Of Things

Electronics

Board
Operating

System

Communication

Stack

Application

Framework

JSON Schema

JSON Data Interchange Format

REST protocol

JSON (JavaScript Object Notation)

is a lightweight, text-based,

language-independent data

interchange format

84 Pascal Urien

EXAMPLE 1: NEST
85 Pascal Urien

https://www.threadgroup.org

DTLS + J-PAKE

Authentification

J-PAKE is a password-

authenticated key exchange

(PAKE) with “juggling” (hence

the “J”).

It essentially uses elliptic

curve Diffie-Hellmann for key

agreement and Schnorr

signatures as a NIZK (Non-

Interactive Zero-Knowledge)

proof mechanism
86 Pascal Urien

87 Pascal Urien

6LoWPAN deals with IPv6 and
Mesh networks

IEEE 802.15.4

MAC Frame Size 127 Bytes

IpV6 header 40 Bytes

TCP header 20 Bytes

88 Pascal Urien

IEEE 802.15.4
• Coordinator is assumed to be the Trust Center (TC) and

provides
– Cryptographic key establishment
– Key transport
– Frame protection
– Device management

• Cryptographic Keys
– Master , basis for long term security used for symmetric

key establishment. It is used to keep confidential the Link
Keys exchange between two nodes in the Key
Establishment Procedure (SKKE).

– Link, shared exclusively between two network peers for
Unicast communication.

– Network, used for broadcast communication security.

89 Pascal Urien

http://www.silabs.com/

THREAD BOARD

90 Pascal Urien

Example 2: Open Connectivity
Foundation (OCF)

91 Pascal Urien

The Open Connectivity Foundation

(OCF) is creating a specification

and sponsoring an open source project to

make this possible.

The OCF sponsors the IoTivity open

source project which includes a reference

implementation of our specification

available under the Apache 2.0 license.

https://openconnectivity.org/

 Open Interconnect Consortium (OIC)
Create, Read, Update, Delete, Notify: CRUDN

92 Pascal Urien

IOTIVITY

IoTivity is an open source software framework enabling seamless device-to-

device connectivity to address the emerging needs of the Internet of Things.

It supports multiple operating systems : Linux, Android, Tize, Arduino

https://www.iotivity.org/
Unified Block (UB) stack Thin Block (TB) stack

93 Pascal Urien

Smartphone Bulb Interaction

94 Pascal Urien

rt: Resource Type ID

if: Interface

CoAP /HTTP

95 Pascal Urien

Access Control List (ACL)

96 Pascal Urien

Secure Storage

It is strongly recommended that IoT device makers provide reasonable

protection for Sensitive Data so that it cannot be accessed by unauthorized

devices, groups or individuals for either malicious or benign purposes.

In addition, since Sensitive Data is often used for authentication and

encryption, it must maintain its integrity against intentional or accidental

alteration

Device Authentication with DTLS

Device Authentication with Symmetric Key Credentials

Device Authentication with Raw Asymmetric Key Credentials

Device Authentication with Certificates

Secure Boot

In order to ensure that all components of a device are operating properly and

have not been tampered with, it is best to ensure that the device is booted

properly. There may be multiple stages of boot. The end result is an

application running on top an operating system that takes advantage of

memory, CPU and peripherals through drivers. 97 Pascal Urien

 IPv4/IPv6 Issue

98 Pascal Urien

Example 3. MBED

99 Pascal Urien

MBED stack from the ARM company

100 Pascal Urien

IoT Protocols

• HTTP (most of today IP objects)
– As an illustration some connected plugs work with the

HNAP (Home Network Administration Protocol) protocol
based on SOAP and used in CISCO routers. In 2014 HNAP
was infected by" The Moon".

• MQTT protocol, is a Client Server publish/subscribe
messaging transport protocol that is secured by
TLS.

 101 Pascal Urien

CoAP, RFC 7252
• CoAP (Constrained Application Protocol) , RFC 7252 is designed according to

the Representational State Transfer (REST) architecture , which encompasses
the following six features:
– 1) Client-Server architecture;
– 2) Stateless interaction;
– 3) Cache operation on the client side;
– 4) Uniform interface ;
– 5) Layered system ;
– 6) Code On Demand.

• CoAP is an efficient RESTfull protocol easy to proxy to/from HTTP, but which is
not understood in an IoT context as a general replacement of HTTP.
– It is natively secured by DTLS (the datagram adaptation of TLS), and works over a

DTLS/UDP/IP stack. Nerveless the IETF is currently working on a CoAP version
compatible with a TLS/TCP/IP stack.

 102 Pascal Urien

CoAP
Details

Version (V): protocol version (01).

Type (T) message type :

 Confirmable (CON), Non-confirmable (NON), Acknowledgement (ACK) or Reset.

Token Length (TKL)/ is the length of the Token field (0-8 bytes).

The Code field: identifies the method and is split in two parts a 3-bit class and a 5-bit detail

 documented as "c.dd" where "c" is a digit from 0 to 7 and "dd" are two digits from 00 to 31.

 0.01 GET, 0.02 POST, 0.03 PUT and 0.04 DELETE.

Message ID: matches messages ACK/Reset to messages CON/NON previously sent.

The Token (0 to 8 bytes): is used to match a response with a request.

Options: give additional information such as Content-Format dealing with proxy operations.

103 Pascal Urien

LWM2M

• LWM2M (Lightweight Machine to Machine Technical Specification) is a framework based on CoAP dealing with
objects hosted by LWM2M clients and communicating with LWM2M servers

• LWM2M manages the following interfaces
– Bootstrap
– Client Registration (with servers)
– Device management
– Information Reporting

• Two transport mechainsm ("transport channel bindings“)
– UDP/IP
– SMS

104 Pascal Urien

Example 4. Home Kit

105 Pascal Urien

HOME Kit (Apple)

The HAP (HomeKit

Accessory Protocol) initial

pairing exchange is based on

the Secure Remote Password

procedure (SRP, RFC 5054)

which deals with a 8 digits PIN

code available for every

accessory.

Protocol Security

- End-to-end encryption

- Initial setup secured directly

between iOS and accessory

- Perfect forward secrecy

- Standard cryptography

106 Pascal Urien

Example 5. Brillo & Weave

107 Pascal Urien

Brillo & Weave
Brillo is an OS from

Google for building

connected devices.

35MB Memory

Footprint (minimum)

Weave is a communications protocol that

supports discovery, provisioning, and

authentication so that devices can connect

and interact with one another, the Internet,

and your mobile platforms.

The Intel® Edison Board Made for Brillo.

108 Pascal Urien

Brillo and Weave
Weave is a communications platform for

IoT devices

- Device setup, phone-to-device-to-cloud

communication

- User interaction from mobile devices and

the web

- Transports: 802.15.4 (zigbee, threads),

BLE, WiFi, Ethernet, Others possible

- Schema Driven (json) Associates Weave

XMPP requests with application function

invocations

 - Web apps may be written with Google*

API support

- OAuth 2.0 Authentication, Google as AS

Brillo is Simpler… Smaller…IoT

Focused

- C/C++ environment

- Binder IPC No Java

Applications, framework, runtime

-No Graphics

- 35MB Memory Footprint

(minimum)

109 Pascal Urien

Client Hello (Client Random)

Server Hello (Server Random, SessionID)

*Certificate

Certificate Request

ServerHelloDone

*Certificate

*CertificateVerify {MessagesDigest} KPrivC

ChangeCipherSpec

Server

ChangeCipherSpec

Encrypted Server Finished Message

Client

Server
KPubS

CA
KPubCA

Client
KPubC

Encrypted Client Finished Message

ClientKeyExchange {PreMasterSecret}KPubS

Encrypted and HMACed RECORD

Encrypted and HMACed RECORD

Flight1

Flight2

Flight3

Flight4

Client Hello (ClientRandom, SessionID)

Server Hello (ServerRandom, SessionID)

ChangeCipherSpec

Server Client

Encrypted Client Finished Message

Encrypted Server Finished Message

ChangeCipherSpec

Encrypted and HMACed RECORD

Encrypted And HMACed RECORD

Flight1

Flight2

Flight3

About TLS

110 Pascal Urien

TLS/DTLS Security Modules

111 Pascal Urien

About DTLS

The two first number

are respectively the

record sequence

number and the epoch

field.

The optional third

number is the message

sequence used by a

handshake message.

112 Pascal Urien

Handshake cryptographic calculations are insensitive to

fragmentation operations.

According to finished messages (either client or server) have no

sensitivity to fragmentation. There are computed as if each

handshake message had been sent as a single fragment, i.e.

with Fragment-Length set to Length, and Fragment-Offset set to

zero ; the Message-Sequence field is not used in these

procedures.

It also should be noticed that the DTLS-HelloVerifyRequest

message and the previous associated DTLS-ClientHello are not

taken into account by the Handshake cryptographic

calculation.

DTLS
cryptographic

details

113 Pascal Urien

DTLS Handshake and Record Layer

114 Pascal Urien

About
EAP-
TLS

EAP-Request-EAP-TLS, Flags-Start

EAP-Response-Identity

EAP-Response-EAP-TLS, Flags, TLS Flight1

EAP-Request-EAP-TLS, Flags, TLS Flight2

EAP-Response-EAP-TLS, Flags, TLS Flight3

EAP-Request-EAP-TLS, Flags, TLS Flight4

EAP-Response-EAP-TLS, Flags

EAP-Success

EAP-Request-Identity

Client Server

TLS

Exchanges

115 Pascal Urien

- The L bit (length included) is set to indicate the presence of the four-

octet TLS flight length field, and is set for the first fragment of a

fragmented TLS message or set of messages.

- The M bit (more fragments) is set on all but the last fragment.

- The S bit (EAP-TLS start) is set in an EAP-TLS Start message.

EAP-TLS Flags Field
Segmentation Reassembly Procedures

116 Pascal Urien

EAP-DTLS

EAP-Request-EAP-TLS, Flags-Start

EAP-Response-EAP-TLS, Flags, DTLS Flight1

EAP-Request-EAP-TLS, Flags, DTLS Flight2

EAP-Response-EAP-TLS, Flags, DTLS Flight3

EAP-Request-EAP-TLS, Flags, DTLS Flight6

EAP-Response-EAP-TLS, Flags

Client Server

DTLS

Exchanges

EAP-Request-EAP-TLS, Flags, DTLS Flight4

EAP-Response-EAP-TLS, Flags, DTLS Flight5

EAP-Success

117 Pascal Urien

EAP-Request-EAP-TLS, Flags, Application data

EAP-Response-EAP-TLS, Flags, Record Packet

EAP-Request-EAP-TLS, Flags, Record Packet

EAP-Response-EAP-TLS, Flags, Application data

Encryption

Decryption

Client Server

118 Pascal Urien

About Secure Elements
• Secure Elements are tamper resistant

microcontrollers, whose security is enforced by
multiple hardware and software countermeasures.

• Their security level is ranked by evaluations
performed according to the Common Criteria
standards, whose level range from one to seven.

• The chip area is typically 25mm2 (5mm x 5mm). The
power consumption is low , as an illustration for SIM
module 1.8V-0,2 mA (3.6mw) in idle state and no
more than 1.8V-60mA (108 mW) in pike activity.

119 Pascal Urien

About Secure Elements
• Secure microcontrollers comprise a few hundred KB of ROM,

about one hundred KB of non volatile memory (E2PROM, Flash)
and a few KB of RAM.

• Most of them include a Java Virtual Machine and therefore run
applications written in the Javacard language, a subset of the
java language.

• A TLS/DTLS stack is an application, typically a javacard
application, stored and executed in a secure element. Its logical
interface is a set of APDUs exchanged over the IO link.

• We previously designed EAP-TLS smartcards, which compute
TLS flights encapsulated in EAP-TLS messages, until the
generation of server and client finished messages.

120 Pascal Urien

Illustration of (TLS) Encryption and
(DTLS) Decryption Operations

121 Pascal Urien

DTLS

EAP-TLS

BRIDGE

DTLS

PACKETS
EAP-TLS

PACKETS C
P

U

E2PROM

ROM R
A

M

DTLS SECURITY

MODULE

APPLICATION

TLS

EAP-TLS

BRIDGE

TLS

PACKETS
EAP-TLS

PACKETS C
P

U

E2PROM

ROM R
A

M

TLS SECURITY

MODULE
APPLICATION

122 Pascal Urien

The cryptographic module (Gemalto TOP-IM_GX4)is based on

the Samsung S3CC9TC chip. It includes:

- a 16 bits CPU

- 72 KB of EEPROM

- 384 KB of ROM

- 8 KB of RAM for the CPU

- 2 KB of RAM for the crypto processor

Experimental Platform

123 Pascal Urien

The booting of a TLS/DTLS session (until the delivering of

finished messages) should cost about 878 ms (1300 ms

measured) consumed by the following operations:

- 556 ms for RSA procedures, one RSA private key

encryption and two public key decryptions (510+ 23 + 24)

-322 ms for hash procedures, requiring the computing of

230 MD5 et 230 SHA1 block

The measured time for a resume session (75 SHA blocks+ 75

MD5 blocks = 105 ms) setting is 360 ms

Performances

124 Pascal Urien

Performances

The processing of encrypted record packets, with a 1024 bytes

size, should require about 143 ms (415 ms measured),

according to the following relations :

- 135 ms (64 x 2,1) for the encryption/decryption of 64 blocks of

data.

- 18 ms (20 x 0,9) for the HMAC (SHA1) processing of 20 (16+4)

blocks of data

125 Pascal Urien

Example of Application

“Innovative DTLS/TLS Security Modules Embedded in SIM Cards

for IoT Trusted and Secure Services”, to appear, IEEE CCNC 2016

COAP

SIM DTLS
Client

NFC

COAP

DTLS
Server

NFC

HTTP

SIM TLS

TCP

IP

KeyServer
eLock

126 Pascal Urien

USE Case 1. CoAP Key

Secure Element as a CoAP Client

Secure Element as a TLS client

Urien, P.; "Innovative DTLS/TLS Security Modules Embedded in SIM Cards

for IoT Trusted and Secure Services", IEEE CCNC 2016, Las Vegas, NV, USA

Urien, P.; "Towards Secure Elements For The Internet of Things: The eLock Use

Case", IEEE MobiSecServ 2016, Gainesville, FL, USA

127 Pascal Urien

Issues to Solve
• What is a Key in the Internet of Things ?

• A Mobile Application ?
• Where is stored the Key ?

• In a Secure Element (SIM)
• Who is generating the Key ?

• A Key server generates
KeyContainers

• What about security and trust
– COAP client and dual TLS/DTLS stack

are running in a Secure Element

In the Internet

of Thing (IoT)

a lock is a

COAP Server

So the Key

is a COAP

Client

128 Pascal Urien

IEEE CCNC 2016 Demonstration

129 Pascal Urien

User’s Experience

130 Pascal Urien

Double TLS with RACS Server for Key
Provisionning

TLS Session

is transferred

to the Mobile

Get

KeyContain

er

Write KeyContainer in the SIM

2xTLS

NFC Lock

COAP Server

SIM COAP

TLS/DTLS Security Module RACS Server

COAP POST

KeyValue

COAP

DTLS
TLS

COAP ACK OK

DTLS Close

DTLS Close

 DTLS

131 Pascal Urien

Use Case 2. TLS Server
for Operated Connected Plug

Secure Element as TLS Server Stack

132 Pascal Urien

A Connected Plug

TLS

HTTP

TLS Server

TCP

IP

ePlug.java

TLS-SE API

JAVA 1.5

PCSC-
Lite

Virtual
Hub

Debian OS

133 Pascal Urien

Power In

Power Out

Switches

AmpMeter

TLS

Raspberry Pi
134 Pascal Urien

Questions ?

Pascal Urien

October 9th 2016

135 Pascal Urien

