

Institut Mines-Télécom

GREEN 2016 July 24 – 28, 2016 – Nice France

Tutorial 2

Architectures for IoT Applications in the Energy Domain

Dr. Guillaume HABAULT

guillaume.habault@telecom-bretagne.eu

24/07/2016

Outline

Context

- Internet of Things
- Challenges
- Energy
- Issues and challenges

Architectures for IoT

- oneM2M
- IoT-A
- IIC
- AIOTI

Smart Energy Aware Systems (SEAS)

- Objectives
- SEAS Reference Architecture Model (S-RAM)

Context

- Internet of Things
- Energy
- Trends, issues and challenges

Internet of Things – Context (1/4)

Smart "objects"

- Connecting to Internet
- Feeding others with collected information

Anything can be a "thing"

- Uniquely identified
- Provide empirical data

Limitless concept

- Domains (health, environment, energy, etc.)
- Services
- Lots of potential

Internet of Things – Context (2/4)

Monitor different environments

- Analyze collected data
- Manage/control environment

Constrained devices

- Limited capabilities
- Required adapted protocols

Nature of the traffic

- Low volume per endpoint
- Event-driven or Scheduled at regular interval
- Energy-, resource- and cost-efficient

Different from Human communications

- High-volume per endpoint
- Burst-like

⇒ Internet has not been designed for such traffic

Exponential grows of devices and traffic

Internet of Things – Challenges (4/4)

Manage such amount of devices

- With different capabilities (Access, hardware, etc.)
- Specific traffic
- Required specific protocols (IPv6, CoAP, etc.)

Architecture

- Scalable, adaptable and dynamic
- Automated
- Develop new business and services

Protect device and information

- Access control and storage of data
- Privacy of data
- Secure communication

⇒ Dedicated architecture is required

Energy – Context (1/3)

Different type of energy sources

- Each with advantages and drawbacks
 - (un)limited
 - (ir)regular
 - Hazardous for the planet

Increasing needs

Difficulty to manage/monitor

- Needs vs Production vs Actual consumption
- Over-production penalty
- Understand consuming behavior

Energy – Context (2/3)

Energy network

- Centered on big production sites
- With widespread distribution network
- And consumer at endpoints

Desire to

- Protect the planet with
 - Better sources
 - Better consumption
- Decrease pollution
- Lower waste and losses

⇒ IoT might help achieve these objectives

T2. Architectures for IoT Applications in the Energy Domain

Energy – Electricity (3/3)

Growing usage of local renewable production

- ⇒ Producer and consumer : "Prosumer"
- Less reliable
- Higher demand
- From rigid to distributed network

Timely issue

- Growing number of devices
- Increasing number of Electric Vehicles
- ⇒ Effect on peak time consumption
- Need for better management systems

Optimize consumption

- Influence "prosumer"
 - Via demands (shift or use of alternatives)
 - With tools to better use renewable energies
- At different scale

IoT and Energy – Challenges (1/4)

IoT can help monitor, manage, optimize and coordinate both production and consumption

With proper management,

- Local production and consumption can be balanced
- Both local and global production can be optimized and coordinated
- Local behavior can support the main grid when required (e.g. peak time)
- Etc.

Create new businesses

• Flexibity (e.g. negawatts)

IoT and Energy – Challenges (2/4)

- Need for an architecture to interconnect energy actors and better manage energy use
- Properly balancing energy network
 - Real-time and predictive measurement
 - Control capabilities on large distributed volume
 - Involve end-user
- Control load possible for decades but is not widely enough adopted to cope with current challenges

Required to

- Find each party
- Access a resource
- Learn details from different endpoints
- Implement technical compatibility to each endpoints
- Compensate for access and compliance to commitments

IoT and Energy – Requirements (4/4)

Need for an architecture

- Scalable
- Dynamic
- Automated
- Secure

Include prosumer in the architecture and management

- Enable different levels of management
 - Local
 - Global (when possible)
 - Etc.

Different architectures/platforms/systems exist to

- Interconnect different nodes and systems
- Manage energy Demand and Response
- Collect and analyze data

Architecture for Internet of Things

- State-of-the-Art
 - oneM2M FA
 - IoT-A ARM
 - IIC IIRA
 - AIOTI HLA
- Which one for the Energy domain?

Functional Architecture (1/4)

- 8 ICT standards bodies
- 6 Standard Development Organizations

Observation:

Several M2M standardization effort

- ETSI M2M
- OMA DM
- Lightweight M2M

Consequences

- Scattered effort
- No common solution

Functional Architecture (2/4)

Proposition: oneM2M Functional Architecture

Motivations

- Prevent duplication of standardization effort
- Need for a common M2M Service Layer
- Connect the myriad of field devices with all M2M applications

Objectives

- Ensure most efficient deployment of M2M communications systems
- Develop technical specifications

Functional Architecture (4/4)

Results

- Full technical M2M architecture
- Interconnection with bank systems

No information regarding

- Automation using semantics and ontology (yet)
- Different management levels

Drawbacks

- Focus on M2M
- Few involvement of end user

Internet of Things – Architecture (IoT-A)

European FP7 Research Project

Observation: Current "smart" solutions

- Used specific application and architecture
- Left little place for interoperation

Consequences

- IoT landscape fragmented
- Not fully using IoT potential
 - i.e. crossing information from different domains

Architecture Reference Model (2/4)

Proposition: Architecture Reference Model

Motivations

- Develop guidelines to build compliant loT solutions
 - Common understanding of IoT
 - Common foundation (interoperable system)
 - Standardized interfaces
 - Providing best practices

Objectives

- Provide a common Reference model for IoT Domain
- Help develop all IoT-related solutions

Architecture Reference Model (3/4)

Institut Mines-Télécom

TELECOM Bretagne

24/07/2016

Results

- Abstract model to fit to any domain
- Semantic description of each entity
- Several interoperable IoT solutions based on common grounds

No information regarding

- Automation using semantics and ontology
- Any implementation and performance result
- Interconnection with other systems (e.g. bank)

Industrial Internet Consortium

- Composed of several Industry players
- Aims to promote and accelerate development of industrial internet technologies

Observation: Lots of industrial control systems

Consequences

- Industrial IoT landscape fragmented
- Not fully using power of IoT
 - i.e. crossing information from different domains, especially non industrial one

Proposition: Industrial Internet Reference Architecture

Motivations

- Connect industrial systems with people
- Fully integrate them with enterprise systems, business processes and analytics solutions
- Increase optimization, operation and collaboration among different autonomous control systems

Objectives

- Bring these systems online
- Combine them with organizational or public information
- Form large end-to-end systems
- Provide guidelines for
 - Standard-based, open and horizontal architecture frameworks
 - Implementing reference architectures with interoperable and interchangeable blocks

Industrial Internet

Results

- High level of abstraction to support any industrial domain requirement
- Hierarchical node management
- On going testbeds

No information regarding

Automation using semantics and ontology

Questioning

- Centralized solutions?
- Application to non industrial scenario (e.g. energy)? ۲

Alliance for Internet of Things Innovation

- Initiated by the European commission
- Creation of a dynamic European IoT ecosystem to unleash the potential of the IoT

Observations:

- No common European IoT market
- Current systems mainly focused on sensors

Consequences

- IoT landscape fragmented
- Not fully using power of IoT, especially at large scale
 i.e. crossing information from different domains

High Level Architecture (2/3)

Proposition: AIOTI High Level Architecture

Motivations

- Need to foster interoperability
- Link architecture with semantic interoperability
- Use ISO/IEC/IEEE 42010 to provide minimal requirements

Objectives

- A single market for IoT
- A thriving IoT ecosystem
- A humand-centered IoT approach
- Interconnection with non-IoT systems

AIOTI

High Level Architecture (3/3)

Results

- Minimal model based on semantic
- Three management levels (device, gateway and infrastructure)
- Domain model derived from IoT-A
- Functional model compatible with oneM2M and IIC architectures

No information regarding

Interconnection with other systems

New alliance only few documents available

Which one to choose ?

Energy domain requires

- Involvement of prosumer
- Interconnections with others systems (e.g. bank)
- An architecture adaptable and scalable
- Different levels of management, decision and optimization
- Coordination between each level
- Automation
- Mobility management

None satisfy all these requirements

Smart Energy Aware Systems

- What?
- Why ?
- Proposed solution

Goal

Enable better energy resource management (both production and consumption)

Provides the means to do it

- Universal language enabling automatic communications
- Innovative architecture enabling scalable, efficient, dynamic and real-time management

Enhanced architecture

Define an architecture

- Compatible with IoT architecture model
- Suitable for energy domain and especially electrical network
- Nodes may
 - Move without breaking the architecture
 - Evolve with hardware enhancement

Hybrid Architecture

- Interconnect all energy players
- Structured peer-to-peer and client/ server models
- Efficiently search for a given resource/information
- Optimizing entities interactions/ requests
- Facilitating data analysis

Requirements

- Common information model
- Transaction capabilities
- Data transmission
- Field deployment
 - Self configuration
 - Supports discovery
 - Management capabilities
- Security
 - Identity enable
 - Multiple trust levels
 - Multiple level of authorization

SEAS Reference Architecture Model (S-RAM)

Estimation of Photovoltaic Panel Production

S-RAM Proof-of-Concept

S-RAM PoC

Learning based on previous

- Production measurements
- Cloudiness percentage forecasts

S-RAM PoC – Production estimation results

TELECOM Bretagne

Finish implementation of Core Services

Setup different testbeds

- Implement more services
- Test automation for deployment and use

Test interoperability with other architectures

