
Towards Generic Design Patterns
for Evolvable Modular Architectures

Prof. dr. Herwig Mannaert

Normalized Systems Institute

University of Antwerp



1

Table of Contents

• Introduction

• Laws of Modularity Combinatorics

• Combinatorics of Aggregation Dimensions

• Conclusions



2

Table of Contents

• Introduction

- Sciences of the Artificial

- Modular Software Design

- The Power of Modularity

• Laws of Modularity Combinatorics

• Combinatorics of Aggregation Dimensions

• Conclusions



SCIENCES OF THE ARTIFICIAL

Herbert Simon



4

• The architecture of the artificial:

HIERARCHY

Sciences of the Artificial



5

Recursive

The Architecture: Hierarchy

• Interrelated subsystems, hierarchic in structure,
until some lowest level of elementary subsystem.



Separation
in space



Separation
in time

(1-p)
1000

(1-p)
10

(1-p)
10

(1-p)
10



MODULAR SOFTWARE DESIGN

Dave Parnas – Double Dictum



9

Modules - Coupling

• Coupling is a measure of the dependencies
between modules



10

Modules - Cohesion

• Cohesion is a measure of how strongly
the elements in a module are related

• Good design=

Low coupling and high cohesion!



11

Modules – advantages

Complexity Reduction

Reuse

Evolvability



THE POWER OF MODULARITY

Carliss Baldwin & Kim Clark



13

The Modularity Conundrum

• Powerful systems are built of many elements

• Power comes from elements’ interplay

• This interplay results in essential
interdependences and reduces ability to

- reuse element w/o others

- change element w/o changing others

A B

Edges mean “knows
about”



14

Design Rules

• Idea: have components depend on design
parameters guaranteed not to change,
called Design Rules

• Design rule may be a convention, interface,
representation, programming language, etc.

• Design rules are the global, unhidden
assumptions; they are the architecture

• Chosen properly, elements depend on design
rules rather than on each other, becoming true
modules

A’ B’

D. R.



15

The Value of Modularity

• Modularity not only accommodates change
• It encourages innovation by decentralizing

decision making on hidden modules
• Technically, it creates the option for third parties

to innovate on a module
- Parties compete to create a better module
- A few “experiments” likely to create superior module

whose value to users exceeds cost of experiments;
downside minimal because can keep old

• Cluster of innovators emerge around
architecture, resulting in new industry



16

Table of Contents

• Introduction

• Laws of Modularity Combinatorics

- Separating Modules: Cohesive Variation Gains

- Aggregating Modules: Coupling Ripple Costs

• Combinatorics of Aggregation Dimensions

• Conclusions



SEPARATING MODULES

On Exponential Variation Gains



18

Systems and Processes

• a software program

• a chair manufacturing

• a car assembly process

• a study/training program

• a business process flow

• a cough syrup production

• …



19

Emerging Units and Variants

U
1 U

2

U
n



20

Emerging Units and Variants

U
1 U

2

U
n

• a software program
• logic units of work
• computation variants

• a chair manufacturing
• chair parts
• variants of parts

• a car assembly process
• mounting parts
• versions and options

• a study/training program
• course modules
• majors/electives

• a business process flow
• tasks or activities
• various rules

• a cough syrup production
• ingredients syrup
• various fever relievers

• …



21

Global Module: Config Glue

Unit versions:

U
1 U

2

U
n

#k1 #k2

#kn

Glue logic

U
1 U

2

U
n



22

Global Module: Config Glue

Unit versions:

U
1 U

2

U
n

#k1 #k2

#kn

Glue logic

• a complex program
• all variants of all units
• selection logic

• a chair manufacturing
• all part versions
• selection in process

• a car assembly process
• all variants of all parts
• selection and steering

• a study/training program
• all course part versions
• choosing in process

• a business process flow
• all versions of all tasks
• evaluation and selection

• a cough syrup production
• ingredient variants
• selection and steering

• …



23

Global Module: Config Variants

Unit versions:

U
1 U

2

U
n

U
1 U

2

U
n vn

v2
v1

Module versions:



24

Global Module: Config Variants

Unit versions:

U
1 U

2

U
n vn

v2
v1

Module versions:

• a dedicated program
• for every input set
• input configurator

• a chair manufacturing
• for every chair type
• Routing configurator

• a car assembly process
• for every possible car
• routing configurator

• a study/training program
• for every unique program
• input configurator

• a business process flow
• for every possible path
• input configurator

• a cough syrup production
• for every composition
• routing configurator

• …



25

Emerging Units and Variants

U
1 U

2

U
n

• a software program:
• logic units of work
• computation variants

• a chair manufacturing
• chair parts
• variants of parts

• a car assembly process
• mounting parts
• versions and options

• a study/training program
• course modules
• majors/electives

• a business process flow
• tasks or activities
• various rules

• a cough syrup production
• ingredients syrup
• various fever relievers

• …



26

Emerging Cohesive Modules

#k1 #k2

#kn

M
1 M

2

M
n

Module versions:

System variants:



27

Cohesive Modules

Module versions:

System variants:

M
1 M

2
#k1 #k2

#kn
M

n

• a set of modules
• for every unit of work
• with various versions

• chair manufacturing units
• for every chair part
• with various options

• car assembly process units
• for every car part
• with various part variants

• study/training modules
• for every course module
• with various options

• business activity modules
• for every possible task
• with various options

• syrup ingredient units
• for every ingredient
• with various flavours

• …



28

Combinatorics of Modularity

Exponential Variation Gains

Module versions: Module versions:

System variants:System variants:

M
1 M

2
#k1 #k2

#kn
M

n

U
1 U

2

U
n vn

v2
v1



29

The Dream: Doug Mc Ilroy

“expect families of routines to be constructed on rational principles so
that families fit together as building blocks. In short, [the user]

should be able safely to regard components as black boxes.”

uit: McIlroy, Mass Produced Software Components,
1968 NATO Conference on Software Engineering, Garmisch, Germany.



30

Framework Combinatorics

Module versions: System variants:



AGGREGATING MODULES

On Exponential Ripple Costs



32

Combinatorics of Coupling

aggregate

Potential 1st impact:

Potential 2nd impact:

v2

#d2

M
1 M

2#k1

#kn
M

n

M
1 M

2
#k1 #k2

#kn
M

n

Change: Exponential Ripple Costs



33

Combinatorics of Coupling

Potential 1st impact:

Potential 2nd impact:

v2

#d2

M
1 M

2#k1

#kn
M

n

• change a module
• version of computation
• with impact on interface

• change a chair leg
• specific type of leg
• impact on leg connection

• change a car part
• other implementation
• impact on fixation

• change a study module
• other content
• impact on prerequisites

• change an activity module
• other implementation
• impact on dependencies

• change a fever ingredient
• other substance
• interaction complication

• …



34

Coupling has Many Faces

Potential 1st impact:

Potential 2nd impact:

v2

#d2

M
1 M

2#k1

#kn
M

n

• change a module
• requires new version jdk
• answer comes back async

• change a chair leg
• hardness is damaging
• must be mounted earlier

• change a car part
• cooling liquid too viscous
• should be fixated earlier

• change a study module
• exam facilities limited
• requires other module first

• change an activity module
• other authorization scheme
• other task prerequisite

• change a fever ingredient
• impact on solubility
• needs direct pressurization

• …



35

M
y #ky

#kz
M

z

re-use
vxM

x

#dx

Combinatorics of Re-Use

Change: Exponential Ripple Costs

v2

#d2

M
1 M

2#k1

#kn
M

n



36

M
y #ky

#kz
M

z

vxM
x

#dx

Combinatorics of Re-Use

• re-use a module
• in another program
• changed the interface

• re-use a chair leg
• in another chair or table
• changed the leg connection

• re-use a car part
• In second car or motorbike
• changed the part fixation

• re-use study modules
• in another program
• changed the outcomes

• re-use activity module
• in other processes
• changed the dependencies

• re-use fever ingredient
• in another medicine
• changed the strength

• …



37

Modularity Combinatorics

Unleashing the exponential variation gains,
without mastering the coupling

that entails the exponential ripple costs,

may destroy the evolvability.



38

The Reality: Manny Lehman

The Law of Increasing Complexity

Manny Lehman

“As an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is done

to maintain or reduce it.”

Proceedings of the IEEE, vol. 68, nr. 9, september 1980, pp. 1068.



39

Modularity
is static



40

Table of Contents

• Introduction

• Laws of Modularity Combinatorics

• Combinatorics of Aggregation Dimensions

- Multiple dimensions in modular structures

- Architectures Connecting Modular Dimensions

- Integrated Elements that Exhibit Evolvability

• Conclusions



MULTIPLE DIMENSIONS
IN MODULAR STRUCTURES



42

Hierarchical Aggregation



43

The Integration Problem

• Making a software application highly robust
and secure may imply redevelopment

• Adding water and electricity to a construction
plan may imply several rollbacks

• Taking into account weight/vibration/emission
constraints may imply redesign of an engine

• …



44

Hierarchical Aggregation



45

Introducing Other Concerns

• Adding persistency or access control to
all modules containing data

• Adding electrical power and control to
the majority of car parts

• Asking internationalization and case
studies from course modules

• Demanding secure registration or
logging from process activities



46

Ripple Costs due to Concerns

Potential 1st impact: Potential 2nd impact: Potential 3rd impact:



ARCHITECTURES CONNECTING
MODULAR DIMENSIONS



48

Embedded Dedicated
Implementations

• Adding dedicated persistency module
to every functional module

• Adding dedicated generator or battery
to the majority of car parts

• Develop separate case study module
for every course module

• Introduce dedicated secure registration
module for every activity



49

Embedded Standardized
Implementations

• Adding standardized persistency
module to every functional module

• Adding standardized battery unit to the
majority of car parts

• Select standard case study module for
every course module

• Introduce standardized secure
registration module for every activity



50

Relay Modules to
Dedicated Frameworks

• Adding relay modules to connect to
integrated persistency framework

• Adding power units connecting to
dedicated electrical network

• Retrieving case study module from
dedicated unit to develop cases

• Connecting to a dedicated framework
for secure registration of activities



51

Architectures: 1, 2, and 3



52

Relay Modules to
Standardized Frameworks

• Adding relay modules to tap into
immanent standard solution like JPA

• Adding standard connectors to tap into
standardized electrical network

• Retrieving case study modules from
public provider through keywords

• Adding relay modules to connect to
provider of secure logging services



53

Relay Modules to
Framework Gateways

• Relaying persistency authorization to
dedicated gateway shielding provider

• Power connectors relaying to central
power unit shielding actual provider

• Relaying to dedicated semantic
gateway shielding public case provider

• Relaying to central gateway shielding
actual secure logging service provider



54

Architectures: 3, 4, and 5



55

Aggregating Concerns: Case



INTEGRATED ELEMENTS
THAT EXHIBIT EVOLVABILITY



57

Some Attempts Towards
Evolvability and Scalability



58

Some Attempts Towards
Evolvability and Scalability

Google
Modular
Phones



59

Tesla
Scalable
Batteries

Some Attempts Towards
Evolvability and Scalability



60

The Emergence of Elements

• Additional concerns should be systematically
distributed throughout the functional structure

• The integration of such a concern should be
done in a properly encapsulated/isolated way

• For every concern, an architecture needs to be
designed, as standardized as possible

• The integration skeletons need to be provided
as deep down as possible in modular structure



61

The Emergence of Elements

Element



62

Struct Invoice
- Nr
- Date
- …

Invoice
-Nr
-Date
-…

Anthropomorfism

persistency

Element
Invoice

encapsulate

Concept Element: Software



ProtectionStructure

Isolation

Water

Electricity

Socket

Support core

Concept Element: Construction



64

Normalized Systems Elements

• The ultimate goal is to normalize systems:
to have a normalized transformation:

between function and construction

= x

C 1

C n

F 1

F 1

0

0

based on elementary building blocks:
that solve the m:n design problem



65

Imagine …

• Houses that could be reconfigured or extended without
additional plumbing or electricity works …

• Roads and footpaths that could be moved entirely without
additional drilling for sewer or cable networks …

• Software systems that could be maintained and evolved
without increasing costs and ripple effects …

• Cars, airplanes, and rockets that could be scaled up and
down to carry more or less passengers or freight …

• …



66

Imagine …

The sciences of the
evolving and growing

artificial



67

Table of Contents

• Introduction

• Laws of Modularity Combinatorics

• Combinatorics of Aggregation Dimensions

• Conclusions



68

Conclusions

• We should study more modularity in general,
and characteristics of modular patterns

• There is a tendency to introduce modules for
flexibility, and to reap the variation gains

• Unleashing variation gains without mastering
coupling, may be very harmful to evolvability

• We should address the multi-dimensional
nature of architectural design problems

• The concept of multi-concern elements may
contribute to growing and evolving artefacts



69

Questions


