
Secure Software Development for

the Cloud

Developing Secure Distributed Algorithms

& Architectures

Aspen Olmsted

Cybersecurity/Software Engineering

• Confidentiality - develop algorithms and SOA architectures

protecting privacy

• Integrity – develop algorithms and SOA architectures

guaranteeing strong properties

• Availability - develop algorithms and SOA architectures

providing high availability

• Budget – maintaining the CIA needs to be done within a budget

Secure Software Development

• Not just about protecting software from malicious
users

• Developing software to meeting non-functional
requirements

• Developing software to guarantee correctness

Outline of the Presentation
• Secure Data Engineering Lab @ College of Charleston

• Secure Software Development

• Overview of High Traffic Cloud/SOA vs. 2-Tier Architectures

• Lost Updates Example

• Related Research

• Research
– Buddy System
– Capacity Constraints
– Coarse Grained Services
– Service Constraints
– Business Filters
– Long Running Transactions
– Integrating Heterogeneous Systems
– Autonomous Process Authentication
– Modeling Vulnerable Application Partitions

• Questions

Applied Cybersecurity Research

• Many Cybersecurity programs low level blooms
(memorization/understanding)

• Security+

• CISSP

• Bachelor’s/Master’s programs
should be higher level blooms

(creating/evaluating/analyzing)

Mentoring Students Through SE

• Design & develop secure enterprise software for
industrial clients

• Gettysburg Foundation

• New York Philharmonic

• Seattle Art Museum

• RPM Healthcare

• Footlight Theatre

• Pure Theatre

Funding

• Reverse junior level course in software architecture

• Direct grants to pay students to develop software

• Direct grants for security audits

• National grants for components of humanities
solution (NEH – IHCADS)

• National grants for cybersecurity education

IHCADS

Individualized Humanities Collection and Dissemination
System (IHCADS) is an open source cloud-based
software solution designed to enhance public access to
historical, archeological and artistic data and the
experts who can help interpret the data.

Enterprise Software Application Audits

Security audits of industrial software solutions

• Reverse Classroom

• Sponsored Research Assistant

Outline of the Presentation

• Secure Data Engineering Lab @ College of Charleston

• Secure Software Development

• Overview of High Traffic Cloud/SOA vs. 2-Tier Architectures

• Lost Updates Example

• Related Research

• Research
– Buddy System
– Capacity Constraints
– Coarse Grained Services
– Service Constraints
– Business Filters
– Integrating Heterogeneous Systems
– Autonomous Process Authentication
– Modeling Vulnerable Application Partitions

• Questions

Secure Software Development (SSD)

• Once data is created it needs to be protected

• Once an algorithm is created it needs to be protected

Secure Software Development (SSD)

Results of vulnerabilities in SDLC
• Incorrect Data

• Missing Data

• Unavailability to Systems

• Wasted Resources

• Wasted Money

• Wasted Time

Secure Software Development (SSD)

• Vulnerabilities in Software Applications stem from the
lack of

• Proper Secure Software Development Lifecycle (SSDLC)

• Proper programming language support for SSD

• Proper operating system support for SSD

• Proper training for developers in SSD

Microsoft Security Development Lifecycle

Language/OS Support Weaknesses

• Certificates (C,I)

• Authentication (C,I)
• Process Authentication (C,I)

• Keystore Security (C,I)

• Datastore Security (C,I)

• Codestore Security (I)

• ACID/CAP
• Durability (I)

• Constraints (I)

• Load Balancing (A)

• Redundancy (A,I)

• System Integration (A,I)

• Design Models for Security (C,I,A)

Certificates (C,I)

Private Key Infrastructure (PKI)

Accomplished

• Machine to machine synchronous key exchange

• Validate the integrity of messages from machines

Outstanding Challenge

• Process identification

Authentication (C,I)

Accomplished

• Something you know for humans

• Something you have for humans

• Something about you for humans

• Someplace you are for machines

Missing

• Process Authentication
• We do have Security Assertion Markup Language (SAML)

for some use cases

Keystore Security (C,I)

• Accomplished
• Keys/certificates can be secured in OS with

Android/IOS/Java

• Keys/certificates can be secured by user in Windows

• Issues
• Keys/certificates cannot be secured to specific processes

• Stores are often held in insecure areas of the OS (file
system or registry)

Datastore Security (C,I)

Databases have successfully protected data based on
the agent accessing the data but have failed for
autonomous processes

• Accomplished
• Data can be protected by user/password/location

• Missing
• Processes often need data from datastore

• Anonymous web sites

Codestore Security (I)
Many hacks have involved code manipulation through an
applications machine code mutation, library signature matching
and unauthorized library invocation

• Accomplished

• Code can be signed from app stores

• Device driver signing

• NIST forensic diskprints

• Microsoft file checksum integrity verifier

Codestore Security (I)

• Missing

• Runtime checksum validation of executables

• Library checksum validation

• Protection of hashcode/checksum datastore

ACID vs CAP

• ACID Strong Properties
• Atomic

• Consistent

• Isolated

• Durable

ACID vs CAP (Page 2)

Durability (I)

• Durability guarantees that we do not lose data after a
transaction.

• Server partitioning requires we update many machines
synchronously to avoid lose.

• Offline stores need to resolve conflicts based on many
related factors

Constraints (I)

• Constraints guarantee consistency.

• All constraints should hold before a transaction starts

• All constraints should hold after a transaction
completes

Load Balancing (A)

• Applications need to be agnostic to the server they
are running on

Accomplished
• Session Management

Work Needed
• Limited Resource Consumption (i.e. Locks)

System Integration (A,I)

Accomplished

- Integrating Homogenous Systems

Needs Work

- Integrating Heterogeneous Systems
• Same logical data in different physical models

• Related data

• Offline

Modeling for Security (C,I,A)

• We have many UML diagrams for modeling a software
application but none model the potential
vulnerabilities.

• Vulnerabilities may include C, I or A

Outline of the Presentation
• Secure Data Engineering Lab @ College of Charleston

• Secure Software Development

• Overview of High Traffic Cloud/SOA vs. 2-Tier Architectures

• Lost Updates Example

• Related Research

• Research
– Buddy System
– Capacity Constraints
– Coarse Grained Services
– Service Constraints
– Business Filters
– Integrating Heterogeneous Systems
– Autonomous Process Authentication
– Modeling Vulnerable Application Partitions

• Questions

Cloud/SOA – Service Oriented Architecture

• Composition of interoperable services

• Often called from outside the domain (less control of
concurrency demands)

• Web Service Farm provides redundancy in service
offerings

• 2-Tier gave us ACID Guarantees but the guarantees
are often lost in architecture transition

Simple Web Service Farm

Increasing Availability Through Replication

• Replication Types
• Strict – A transaction updates at all cluster or none

• Lazy – One cluster is the master for a data item and it will
asynchronously update other clusters after a transaction

Increasing Availability w/Lazy Replication

• Pros: Higher Availability

• Cons: Lower Consistency, Lower Durability, Lower
Atomic

Lazy Replication Example

Outline of the Presentation

• Secure Data Engineering Lab @ College of Charleston

• Secure Software Development

• Overview of High Traffic Cloud/SOA vs. 2-Tier Architectures

• Lost Updates Example

• Related Research

• Research
– Buddy System
– Capacity Constraints
– Coarse Grained Services
– Service Constraints
– Business Filters
– Integrating Heterogeneous Systems
– Autonomous Process Authentication
– Modeling Vulnerable Application Partitions

• Questions

Lost Update Example

Outline of the Presentation
• Secure Data Engineering Lab @ College of Charleston

• Secure Software Development

• Overview of High Traffic Cloud/SOA vs. 2-Tier Architectures

• Lost Updates Example

• Related Research

• Research
– Buddy System
– Capacity Constraints
– Coarse Grained Services
– Service Constraints
– Business Filters
– Long Running Transactions
– Integrating Heterogeneous Systems
– Autonomous Process Authentication
– Modeling Vulnerable Application Partitions

• Questions

Related Work

• Improving Availability of Strict Replication
• Snap Isolation Replication (Fekete, et al.)

• Improving Consistency of Lazy Replication
• Frameworks with Lazy Consistency Guarantees (Breitbart &

Korth)

• Hybrid Systems
• Hybrid Majority Systems (Jajodia & Mutchler)

• NoSQL Systems; Casandra, BigTable, etc.

Goals

• Develop Algorithms and Architecture that will
• Guarantee Transaction Consistency for Distributed

Transactions

• Provide Availability of Lazy Replication

• Provide Durability of Strict Replication

Outline of the Presentation
• Secure Data Engineering Lab @ College of Charleston

• Secure Software Development

• Overview of High Traffic Cloud/SOA vs. 2-Tier Architectures

• Lost Updates Example

• Related Research

• Research
– Buddy System
– Capacity Constraints
– Coarse Grained Services
– Service Constraints
– Business Filters
– Long Running Transactions
– Integrating Heterogeneous Systems
– Autonomous Process Authentication
– Modeling Vulnerable Application Partitions

• Questions

Our Solution: Buddy System
• Ensure at least two replicas are updated synchronously

• Maintain data element version so master can be any
updated cluster

• Guarantees one-copy serializability

The Cost of Increased Transactional Correctness and Durability in Distributed
Databases, Information Reuse and Integration (IRI), 2012 IEEE International
Conference on, Publication Year: 2012 , Page(s): 441 – 448

Buddy System: Available, Consistent, Durable Web Service Transactions, Journal of
Internet Technology and Secured Transactions (JITST), 3 (1/2/3/4). ISSN 2046-3723

Buddy system architecture

Dispatcher Intelligence

• Peek into Packet

• Maintains data structures to pick pairs of buddies
who can service a request

• Supplied algorithms randomly choose buddies

• Could decorate cluster data to choose buddies based
on other system and network attributes

Flow under Buddy System

Buddy Sequence

Updates through Buddy System

Cluster Object Version

1 B 954

2 B 954

3 B 954

1 C 2054

2 C 2054

3 C 2054

Object Complete In-Progress

A 1012 1014

B 954955 955

C 20542055 2055

Cluster IP

1 192.168.1.1

2 192.168.1.2

3 192.168.1.3

Loop Through
Clusters

For Each Cluster
Check Version of

Objects

Dispatcher
Chooses Two

Qualified Clusters

Request to
Update Set of
Objects {B,C}

Check Each Objects
Version

Object Complete In-Progress

A 1012 1014

B 954 954

C 2054 2054

Primary Buddy
Grabs Locks

Sends
Request to

Buddy

Buddy
Processes

Transaction

Primary
Completes
Transaction

Sends
Response to

Client

Buddy Sends
Version

Update to
Dispatcher

Object Complete In-Progress

A 1012 1014

B 954 954955

C 2054 20542055

Increment In-
Progress
Versions

Request to
Update Set of
Objects {A,B}

Cluster Object Version

1 A 1014

2 A 1014

3 A 1012

1 B 955

2 B 955

3 B 955

Object Complete In-Progress

A 1012 1014

B 955 955

C 2055 2055

Table 2 – Windows of Vulnerability

Results - Lost Updates

• Buddy System - Guaranteed Durability

• Strict Replication – Guaranteed Durability

• Lazy Replication – Time for replication

Concurrency Improvement by Item Type

• Anonymous Item Consumption - No improvement

• Attribute Item Consumption – Improvement linear to
min(# of attributes,# of clusters)

• Serialized Item Consumption – Improvement linear to
min(# of items,# of clusters)

Implementation

• Java

• Synchronous Requests (Http)

• Clusters (Java EE, Tomcat, MySQL)

• Dataset sizes (100, 1000, 10000)

• Concurrent transactions (100-1000)

Load Tester

Performance Results

Outline of the Presentation

• Secure Data Engineering Lab @ College of Charleston

• Secure Software Development

• Overview of High Traffic Cloud/SOA vs. 2-Tier Architectures

• Lost Updates Example

• Related Research

• Research
– Buddy System
– Capacity Constraints
– Coarse Grained Services
– Service Constraints
– Business Filters
– Integrating Heterogeneous Systems
– Long Running Transactions
– Autonomous Process Authentication
– Modeling Vulnerable Application Partitions

• Questions

Capacity Constraints

• Original Buddy algorithm produced availability equivalent to lazy
replication with higher durability and higher consistency for
serialized resource consumption

• Add Capacity Constraint to Dispatcher to allow writes of anonymous
resources to be distributed

• A Capacity Constraint acts as a counting semaphore to ensure no
more then available number get consumed

High Volume Web Service Resource Consumption, Internet Technology and Secured
Transactions, 2012. ICITST 2012. International Conference for, Publication Year: 2012

Buddy System: Available, Consistent, Durable Web Service Transactions, Journal of Internet
Technology and Secured Transactions (JITST), 3 (1/2/3/4). ISSN 2046-3723

New Improvement By Item Type

• Anonymous Item Consumption - Improvement linear
to min(# of items,# of clusters)

• Attribute Item Consumption – Improvement linear to
min(# of items,# of clusters)

• Serialized Item Consumption – Improvement linear to
min(# of items,# of clusters)

Performance Results

Outline of the Presentation

• Secure Data Engineering Lab @ College of Charleston

• Secure Software Development

• Overview of High Traffic SOA vs. 2-Tier Architectures

• Lost Updates Example

• Related Research

• Research
– Buddy System
– Capacity Constraints
– Coarse Grained Services
– Service Constraints
– Business Filters
– Long Running Transactions
– Integrating Heterogeneous Systems
– Autonomous Process Authentication
– Modeling Vulnerable Application Partitions

• Questions

Coarse Grained Web Services

• Previous web services have been fine grained CRUD
services

• Coarse Grained Services are a black box

• Input and Output data from SOAP WSDL

Coarse-Grained Web Service Availability, Consistency, & Durability, Web Services
(ICWS), 2013 IEEE International Conference on, Publication Year: 2013

Buddy System: Available, Consistent, Durable Web Service Transactions, Journal of
Internet Technology and Secured Transactions (JITST), 3 (1/2/3/4). ISSN 2046-3723

Semantics from Model

• To schedule the coarse grained services we need
semantics

• Which services can be concurrent

• Which services change data

• What data is read by a service

• What data is changed by a service

UML

• UML (Unified Markup Language) – standardized
general purpose modeling language

• XMI (XML Metadata Interchange) – XML format for
storing UML models

UML Extensibility

• Semantics can be added to UML through stereotypes
• Classes can be stereotypes

• Attributes can be stereotyped

• Profiles contain sets of stereotypes

Example Transaction

• Consider a Ticket Reservation System (TRS).

• TRS uses web services to provide a variety of
functionalities to the clients.

• For example, clients may want to select a specific seat
for a popular concert in the ticket reservation

Example Web-Service

• Reserve Seats
• Input : event identifier and a collection of seats

• Output: collection of seats with current statuses

• Data changed: seat records

• Data read: seat records

Stereotypes in Activity Diagram

• Web Services are marked as getters or setters

• Stereotypes are packaged into profile for
development tooling

Sample Class Diagrams

• Each web services in activity diagram has matching
class diagram

• Attribute stereotype identifies unique identifier set

Performance Results

Outline of the Presentation

• Secure Data Engineering Lab @ College of Charleston

• Secure Software Development

• Overview of High Traffic SOA vs. 2-Tier Architectures

• Lost Updates Example

• Related Research

• Research
– Buddy System
– Capacity Constraints
– Coarse Grained Services
– Service Constraints
– Business Filters
– Long Running Transactions
– Integrating Heterogeneous Systems
– Autonomous Process Authentication
– Modeling Vulnerable Application Partitions

• Questions

Service Constraints

• Integrity Constraints Guarantee Consistency

• Unfortunately they lower availability by limiting distribution

• We model Constraints in OCL and categorize to find those that can
run in parallel (distributed)

Web Service Constraint Optimization, Internet Technology and Secured
Transactions, 2013. ICITST 2013. International Conference for, Publication Year:
2013

Service Constraint Guarantees, International Journal of Intelligent Computing
Research, Volume 5, Issues 1/2, Mar/Jun 2014, ISSN: 2042-4655

Integrity Constraint Types

• Entity
• Codd’s Entity (Seq)

• Attribute Domain
• Codd’s Domain (Par), Column(Par), Referential Integrity

(Seq)

• Hierarchical
• Codd’s User Defined (Seq)

Hierarchical Constraints

• Involve more then one tuple

• Two types
• Aggregate – Expensive calculation (min, max, sum, avg)

• Iterative – (universal or existential)

Hierarchical Constraint Materialization

• Maintain data to update aggregation on insert, update or
delete

Object Constraint Parent Value Quantity

smarTrip sequenceOrd 1000120 408 408

Performance Results

Outline of the Presentation
• Secure Data Engineering Lab @ College of Charleston

• Secure Software Development

• Overview of High Traffic SOA vs. 2-Tier Architectures

• Lost Updates Example

• Related Research

• Research
– Buddy System
– Capacity Constraints
– Coarse Grained Services
– Service Constraints
– Business Filters
– Long Running Transactions
– Integrating Heterogeneous Systems
– Autonomous Process Authentication
– Modeling Vulnerable Application Partitions

• Ongoing Research

Business Filters

• 90% of enterprise users change business rules annually

• SOA applications use Web services input/output to process
business rule

• Unfortunately the business rule will often lower availability by
increasing the load and the latency

• Unfortunately the business rule will often lower consistency by
running the rule in a separate transaction

Highly Available, Consistent, Business Rule Filters, Internet Technology and Secured
Transactions, 2014. ICITST 2014. International Conference for, Publication Year: 2014

A Customizable and Secure Software Architecture, International Journal for
Information Security Research (IJISR), Volume 4, Issues 1/2, ISSN: 2042-4639, Accepted

Example Transaction

Original Response

Server-Side Pipe and Filter Architecture
A Server-Side Pipe and Filter Architecture supports integration hooks
- Java EE supports this architecture with Servlet Filters
- Unfortunately filters request data in separate transactions from the
main service

Buddy System Pipe & Filter
Our implementation allows UML additions from each filter. This
results in a single UML to CRUD mapping
- Provides a single transaction for all filters and original service

Empirical Results

Outline of the Presentation
• Secure Data Engineering Lab @ College of Charleston

• Secure Software Development

• Overview of High Traffic SOA vs. 2-Tier Architectures

• Lost Updates Example

• Related Research

• Research
– Buddy System
– Capacity Constraints
– Coarse Grained Services
– Service Constraints
– Business Filters
– Long Running Transactions
– Integrating Heterogeneous Systems
– Autonomous Process Authentication
– Modeling Vulnerable Application Partitions

• Questions

Long Running, Consistent, Web Service
Transactions
• Workflow transactions require several round trips

• Unfortunately they lower availability by holding locks longer

• Garcia-Molina defined sagas as a solution to maintain some of
the atomic properties of ACID transactions when performing
long running transactions.

Olmsted, Aspen. "Long Running, Consistent, Web Service Transactions." Proceedings of the 10th
International Conference for Internet Technology and Secured Transactions (ICITST-2015).
London: Institute of Electrical and Electronics Engineers (IEEE), 2015. 139 - 144.

Compensators for CRUD

• Insert = Delete

• Delete = Insert

• Update ?

Model for Inserts

Empirical Results

Outline of the Presentation
• Secure Data Engineering Lab @ College of Charleston

• Secure Software Development

• Overview of High Traffic SOA vs. 2-Tier Architectures

• Lost Updates Example

• Related Research

• Research
– Buddy System
– Capacity Constraints
– Coarse Grained Services
– Service Constraints
– Business Filters
– Long Running Transactions
– Integrating Heterogeneous Systems
– Autonomous Process Authentication
– Modeling Vulnerable Application Partitions

• Questions

Integrating Heterogeneous Systems

• Enterprise Functional Partitioning

• Transitioning Between Enterprise Systems

Olmsted, Aspen. Fresh, Atomic, Consistent and Durable (FACD) Data Integration
Guarantees, Software Engineering and Data Engineering, 2015 International
Conference for , Publication Year: 2015

Olmsted, Aspen. Continuous Data Integration Guarantees, Software Engineering and
Data Engineering, 2014 International Conference for, Publication Year: 2014

Functional/Departmental Partitioning

• Enterprises value functional requirements over cost of
departmental partitioning

• Survey of CIO Arts
• Fund Raising Systems

• CRM & ERP for Donations

• Ticketing Systems
• CRM & ERP for Tickets

• Event Management Systems
• CRM & ERP for rentals

Example Class Diagram for Each
Departmental CRM

Duplicate Data

• System Partitioning by Functional Areas
(Departments) can lead to duplicate data.

• Biographical data
• Sample organization data

• CASS Standardized

• Move Update Database

• Name Search Web Services

• Found 17% duplication caused by departmental partitioning

Continuous ETL

Mobile Sync Adaptors

Android Sync Adapter

Sync Adapter Issues

• Developer overrides a method to handle conflict
resolution

• Conflict only defined on the individual object level

Lost Update

• If the same object is updated between sync
executions which version is kept.

• What about related records
• Address updated in one system

• Phone number updated in other

Homogenous Replication Related Work

• Improving Availability of Strict Replication
• Snap Isolation Replication (Fekete, et al.)

• Improving Consistency of Lazy Replication
• Frameworks with Lazy Consistency Guarantees (Breitbart &

Korth)

• Hybrid Systems
• Hybrid Majority Systems (Jajodia & Mutchler)

• NoSQL Systems; Casandra, BigTable, etc.

Goals

• Develop Algorithms and Architecture that will
• Guarantee Transaction Correctness for Disconnected

Distributed Transactions Across Heterogeneous Systems

Problem Specification

• Leverage continuous ETL/Sync architecture (when
connected sync changes, when disconnected allow
changes)

• Add ACID transaction guarantees at snapshot
isolation level

• Ensure data is fresh

Proposed Solution - CCETL

Continuous, Consistent, Extract, Translate and Load

• Form transactions for hierarchical data

• Pull hierarchy from design model

• Handle conflicts on the transaction level (not tuple)

• Guarantees one-copy serializability (At snapshot
isolation level)

FACD

• F – Fresh – Data is kept up to date

• A – Atomic – All of a transaction is successful or none
of the transaction is successful

• C – Consistent – The data in the database is correct
before and after the transaction

• D – Durable – The effects of the transaction do not go
away after the transaction is successful

Transaction Formation – Option 1

• Intercept original transaction synchronously and send
original transaction contents asynchronously

• Requires Application Hook (Application Trigger)
• Oracle Forms

• JavaEE (Filters)

Transaction Formation – Option 2

• To reform a transaction asynchronously from the
original transaction, we need a way to identify what
data changed in the original transaction.

• Homogenous Systems – database log

• Heterogeneous Systems – Identify changes and reform
transaction

Example System ZohoCRM

Changed Objects Web Service Call

Transaction Identification

• To identify which records make-up a transaction,
CCETL includes all associated records that were
modified along with the parent record.

• This identification requires an ordering of the
original UML diagram

UML Model (DCG)

Topological Sort

• Step 1
• The first step uses Tarjan's algorithm to find cycles from

individual nodes.

• Once a cycle is found, an incoming edge is removed and
the process continues until all cycles are removed.

Topological Sort

• Step 2
• The second step uses a process of generalization by

inserting mock objects into the inheritance tree.

• The mock objects are inserted when there are identical
inbound edges into a node.

• The addition of the mock objects reduces the branches in
the path of the UML graph.

Topological Sort Algorithm

UML Model (DAG)

3 Types of Data

• Leaf Nodes – Lookup data

• Inner Nodes – Transactional data

• Limited Attributes – Stereotypes for synchronous data

UML Model (DAG) w/stereotype

Continuous Data Integration

• Algorithm picks up changed data

• Algorithm scheduled periodically

• Data is written to the transaction table to ensure that
the integration does not pickup data that was
previous written by the integration.

• Leaf Nodes Scheduled First

CDI – Data Table

Implementation

• Java

• ZohoCRM (Web Services)

• Tessitura ERP (SQL)

• Concurrent transactions (100-1000)

• Single Object vs Transaction

Empirical Results

Outline of the Presentation

• Secure Data Engineering Lab @ College of Charleston

• Secure Software Development

• Overview of High Traffic SOA vs. 2-Tier Architectures

• Lost Updates Example

• Related Research

• Research
– Buddy System
– Capacity Constraints
– Coarse Grained Services
– Service Constraints
– Business Filters
– Long Running Transactions
– Integrating Heterogeneous Systems
– Autonomous Process Authentication
– Modeling Vulnerable Application Partitions

• Questions

Native Autonomous Process
Authentication

Olmsted, Aspen. "Native Autonomous Process Authentication." Proceedings of World
Congress on Internet Security 2016 (World-CIS 2016). London, UK: Institute of Electrical
and Electronics Engineers (IEEE), 2016

Authentication

• Something you know

• Something you have

• Something about you

• Someplace you are

Autonomous Process - HTTP

• Apache – Runs under a Linux user (Something

you know)

• All websites share a single user

• Credentials can not expire like normal users

• IIS – Integrated Security

• Depends on security of client

OAuth 2.0 Workflows

• Web-Server (user authorizes web app)

• User-Agent (user authorizes fat client)

• JWT Bearer Token – Replay signed JSON token

• SAML Bearer – Replay sign SAML

• SAML Assertion – Federated single sign-on

• User and password

Enterprise System Security Audits

• Counterpoint – point of sale used by 1,000s of

organizations

• Tessitura – ERP for Performing Arts and

Museums (over 500 large organizations)

Goals

• Add “something about you” authentication for

autonomous process

• Verify connecting process is not a malicious

process

Solution

• Use OS X app certificate (not what they are

designed for)

• Use codesign utility to validate the certificate

from PPID

Tools/Process

Services Provided

• AddUser credentials

• AddApp credentials

• Create object

• Read object

• Update object

• Delete object

• Exec process

Outline of the Presentation
• Secure Data Engineering Lab @ College of Charleston

• Secure Software Development

• Overview of High Traffic SOA vs. 2-Tier Architectures

• Lost Updates Example

• Related Research

• Research
– Buddy System
– Capacity Constraints
– Coarse Grained Services
– Service Constraints
– Business Filters
– Long Running Transactions
– Integrating Heterogeneous Systems
– Autonomous Process Authentication
– Modeling Vulnerable Application Partitions

• Questions

Modeling Cloud Apps For
Partition Contingency

Olmsted, Aspen. "Modeling Cloud Applications for Partition Contingency." Proceedings of
the 11th International Conference for Internet Technology and Secured Transactions
(ICITST-2016). Barcelona: Institute of Electrical and Electronics Engineers (IEEE), 2016.
230-234.

Cloud Computing

• IAAS – Infrastructure as a service

• SAAS – Software as a service

• PAAS – Platform as a service

Motivating Example

• Gettysburg National Battlefield

• Students building reservation systems in

cloud

• Using Salesforce PAAS

Subset of UML Class Diagram

Sequence Diagram

Partition Tolerant Modeling

• Route all logic through a client-side controller

• All messages from the ARPage now flow

through the ARClientController object.

• Messages are passed asynchronously to the

controller in the cloud.

• If a response is not received then, a previous

result will be used from the client cache.

New Sequence Diagram

Partitionable Methods

• Stereotype methods that need an allotment

• The stereotype “partitionable” tells the server to

do this allotment in the UML design model.

• This stereotype allows the client to continue

selling but not oversell available resources in

the case of a network partition.

Scarce Recourses

• The Guides at Gettysburg were a limited

resource so allocation did not work.

• Implemented a pier-to-pier solution where server

told client who held “allocations” of scarce

recourses.

Generalizing Solution

• Aura Framework
• model-view-controller-controller pattern.

• both a client side controller and a server side

controller.

• Salesforce uses the Aura framework for their

Lightening Component architecture.

• We developed Chrome Extension, App and

Javascript library

Chrome App/Extension and Javascript Library

• Google Chrome apps have greater permissions

than traditional browser applications.

• These higher permissions allow the chrome app

to provide the local network services our

algorithm needs.

• The JavaScript code in the library sends local

messages from the sandbox provided by the

Chrome browser to our Chrome app.

Activity Diagram

Chrome App/Extension and Javascript Library

• partitionGet

• partitionSave

• dataGet

• dataSave

Conclusions/Future Work

• Successfully modeled/implemented

componentized partition tolerant architecture

• Google chrome app runs an asynchronous job

to see if it can go back online

• Inserts and deletes are sent to server

• Future work needs to either handle updates or

stress the insert only modeling

• Future work needs to generate the code based

on the XMI

Modeling Non-Functional
Requirements

Devata, Santoshi, and Aspen Olmsted. "Modeling Non-Functional Requirements in
Distributed Application Software Engineering." Proceedings of The Seventh International
Conference on Cloud Computing, GRIDs, and Virtualization (Cloud Computing 2016).
Rome: International Academy, Research, and Industry Association (IARIA), 2016. 47-50.

Olmsted, Aspen. "Secure Software Development through Non-Functional Requirements
Modeling." Proceedings of the International Conference on Information Society (I-Society
2016). Dublin, 2016. 22-27.

Introduction/Background

• Functional Requirements – Things a system

must do

• Non-Functional Requirements – Things that

must be true in the system

Introduction/Background

• Software architects model functional

requirements using UML diagrams

• Functional Model – Use Case

• Structural Model – Class Diagrams, OCL

• Dynamic Model – Activity & Sequence

Diagrams

• No standard modeling notation to represent

Non-functional requirements

Non-functional Requirements Represent Challenge with

Cloud/Distributed Software Engineering

• Concurrency – HealthCare signup database

• Security – App partitions cross domain

boundaries

• Latency – Network outside of domain

boundaries

• Shared Resources – Locking resources

consumed by use outside domain boundaries

Motivating Example – Ticketing Application

• Sell limited supply of tickets for specific events

• Inventory locks on seat or section level

Goal

• Use standard design tools to model non-

functional requirements

• UML

• OCL

• Export XMI

• Read XMI and generate code to enforce non-

functional requirement

Tools

• Model data in UML with stereotypes for non-

functional requirements

• Export to XMI format

• Run Algorithms on XML to produce application

code

3 Stereotypes

• Concurrent Users (Handle a number of users,

rest to queue)

• Low Latency (Server must respond in certain

amount of time)

• User Response Time (User must respond in

certain amount of time

Activity Diagram for Ticketing Workflow

w/Stereotypes

• Concurrency Algorithm

• System can only handle x

number of users picking

seats at the same time.

• Low Latency Algorithm

• System must respond to

user in a maximum amount

of time.

• User Response Time Algorithm

• User must complete request

in a maximum amount of

time.

Challenges with Stereotype Solution

• No Stereotype Categorization

• Enterprise Size Project Would Have

Thousands of Stereotypes

Object Constraint Language (OCL)

Mock Objects

• Insert Mock Objects to Represent NFR

• Use Inheritance to Specify OCL

Constraint on Inherited Attributes

Object Constraint Language (OCL)

Specification Multiple Inheritance

Inheritance is only required during code generation,

allowing support in languages that do not support

multiple inheritance syntactically

Code Generation From UML & OCL

1.) Import Profile

2.) Apply Stereotypes

3.) Insert Mock Objects

4.) Generate Java Class Stub from UML

5.) Export Model to XMI

6.) Parse XML to find OCL constraints and

insert Java stub to guarantee constraint

7.) Remove generated mock objects

Modeling for Anonymous Cloud Data

• Tuple based Modeling to increase availability

Olmsted, Aspen, and Gayathri Santhanakrishnan. "Cloud Data Denormalization of
Anonymous Transactions." Proceedings of The Seventh International Conference on Cloud
Computing, GRIDs, and Virtualization (Cloud Computing 2016). Rome: International
Academy, Research, and Industry Association (IARIA), 2016. 42-46.

Motivating Example – Gettysburg Foundation

• Grant for 5 undergraduate students to build

cloud solution for ticketing system

• Reservations for Cycloroma, Film & Museum,

Historical Buildings and 3rd Party Guides for

Tours

• Self-Service sales for same activities

• Front-desk walkup sales

Old System – 2 Tier Windows Client/SQL Server

• Over 300 tables in the database

• Over 50 GB data for 10 years worth of history

• Requires expensive annual maintenance

($30,000/year), internal IT support and very

complicated for end user reporting.

Solution – Custom Application on force.com

• As a charity they receive over 80% off on

subscription cost

• 10 free enterprise users

• PaaS (Platform as a Service)

• Loads of training resources available

Challenges

• Only 1GB of data included in subscription

• Can subscribe to more data ($1,000/year/GB)

Measuring Tuples

• Force.com says “you get 1gb of data”, but really

every tuple is 2kb. So you get 500,000 tuples

before you need to pay more.

• Several other cloud platforms use tuples as the

measure of data. Another example is Zoho.com

Goal

• Reduce tuples required in data model

• Maintain same reporting and auditing capability

• Make model as simple as possible for end user

querying

Tools/Process

• Model normalized data in UML with stereotypes

for transactional and lookup data

• Export to XMI format

• Run Algorithms on XML to produce de-

normalized ER

Database Normalization

• Set of steps taken to modify a database to
• Free database from modification anomalies

• Minimize redesign required to support functional

changes

• Technically outputted schema is in 6th normal

form

• Algorithm replaces natural keys with surrogate

keys (often requiring redesign to support

changes).

• Redesign should be done on normalized model

Normalized Data Model

De-Normalized Data Model

• Anonymous Patron Aggregation

• Large Percentage of

transactions walkup

• Force.com provides a

journal for audit type reports

• Transactional stereotype

objects can be aggregated

on Unique fields

• See paper for complete

algorithm

• Swap Leaf Lookup Tables and Convert to

Business Rules

• Large number of tuples

used to store temporal

intersections of lookup

values

• Swap the leafs and turn into

business rule pattern tables

• See paper for complete

algorithm

Journal to instance data

• Provided a cloud side function for reporting that

takes object and date/time range and creates

instance data for end user reporting

Results for 1 Year of Transaction Data

Table Normalized

Tuples

Denormalized

Tuples

user 31 31

patron 17,610 17,610

ticket 738,981 157,780

activity

schedule

26,697 30

price schedule 220 24

activity 17 17

Total 783,556 175,492

Tuple Growth

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

1 2 3 4 5 6 7 8 9 10

Tuple Growth

Normalized De-Normalized

Cost Growth

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10

10 Year Growth in $ for data service

Normalized De-Normalized

Questions?

