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Where is the University 
of Warwick? 
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Connected Systems Research Group 

Within Connected Systems, the Communication Systems Lab 
(https://www2.warwick.ac.uk/fac/sci/eng/research/grouplist/connectedsystems) 
is home to research in Photonic Systems, Optical Technology, Wireless 
Communications, Machine Learning and Nanoscale Communications. The 
fundamental advances in the laboratory will produce impact in areas such as next 
generation mobile data networks, vehicular communications and future healthcare 
monitoring systems. 

4 

https://www2.warwick.ac.uk/fac/sci/eng/research/grouplist/connectedsystems/comsys
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Current Underwater Technology  

Applications: 
• Ocean biology 
• Environmental research 
• Surveillance 
• Seismic monitoring 
• Ship hull monitoring 
• Communicating with 

submarines 
• Diver communications 

Kulhandjian et al., Proc. IEEE Underwater Comm. Conf. and 
Workshop, pp. 12-14, Los Angeles, 2012 
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Acoustics: Current Technology 

Typical application, adapted from Heidemann et 
al., IEEE WCNC  Conference, pp. 228-235,2006. 
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Typical modem 
(Evo Logics) 



Path Loss –absorption  
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signal loss from conversion of acoustic energy to heat, denoted by a(f)  
 
Thorp’s empirical approximation: 



Path Loss -Spreading Loss  
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Use path loss exponent 𝑘 to produce a combination of absorption 
and the spreading loss over a distance 𝑙 in km: 
 

𝐴 𝑙, 𝑓 = 𝑙𝑘 𝑎 𝑓 𝑙 
 
The value of k depends on the propagation environment: 
  
Shallow water, 𝑘 = 1 (cylindrical spreading) 
 
Deep water, 𝑘 = 2 (spherical spreading) 
 
Practical compromise 𝑘 = 1.5  



Noise 

From turbulence, shipping, wind and heat 
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Operating region 



Attenuation Noise (AN) Factor 
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Consider a narrow band of frequencies ∆𝑓 about some centre 

frequency 𝑓𝑐 

𝑆𝑁𝑅 = 𝑆 𝑓 𝐴 𝑙, 𝑓 𝑁 𝑓 ∆𝑓   

The quantity 𝐴 𝑙, 𝑓 𝑁 𝑓  is known as the attenuation noise (AN) 

factor 0
.5

 km
 

 3
 km

 

BW 
increasingly 

limited 



RF is also established 

Typical application from Edwards, New buoys enable submerged subs to 
communicate https://phys.org/news/2010-07-buoys-enable-submerged-subs.html 
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RF Attenuation in Sea Water  
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(Lanzagorta, Underwater Communications, Morgan & Claypool, 2013) 



RF Implementations vs. Acoustic 
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(Adapted from Lloret et al., Sensors, 2012) 

Technology Frequency  Modulation Distance Data Rate 

RF 100 kHz BPSK 6 m 1 kbps 

RF 10 kHz BPSK 16 m 1 kbps 

RF 1 kHz BPSK 2 m 1 kbps 

Acoustic 800 kHz BPSK 1 m 80 kbps 

Acoustic 24 kHz QPSK 2500 m 30 kbps 

Acoustic 70 kHz ASK 70 m 200 bps 

RF 2.4 GHz QPSK 0.17 m 2 Mbps 

RF 2.4 GHz CCK 0.16 m 11 Mbps 



Future Technology 
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Goals  

• Higher bandwidth  

• Communication through the air/water interface  

• Secure/covert  

 

 

 

 

Optical wireless is a possible solution:  

 

transmission of a modulated light beam through an  

open environment to obtain broadband communication  



UOWC Performance Results 
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Types of lasers operating in blue-green spectrum 

Distance Power Source Data Rate 

20 - 30 m 500 mW Blue LED Few kbps 

200 m  5 W LED 1.2 Mbps 

30 m (pool) 
3 m (ocean) 

5 W Laser 1.2 Mbps 
0.6 Mbps 

2 m 10 mW Laser 1 Gbps 

30 - 50 m 1 W Laser 1 Gbps 

31 m (deep sea) 
18 m (clean ocean) 
11 m (coastal) 

100 mW LED 1 Gbps 

64 m (clear ocean) 
8 m (turbid harbour) 

3 W Laser 5 Gbps 
1 Gbps 

7 m (coastal) 12 mW Laser 2.3 Gbps 

5.4 m  15 mW Laser 4.8 Gbps 



Comparison of Technologies 
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Parameter Acoustic RF Optical 

Attenuation Distance and 
frequency 
dependent 
(0.1 - 4 dB/km) 

Frequency and 
conductivity dependent  
(3.5 - 5 dB/m)  

0.39 dB/m (ocean) 
11 dB/m (turbid)  

Speed  1500 ms−1 2.3 × 108 ms−1 2.3 × 108 ms−1 

Data Rate ≈ kbps ≈ Mbps ≈ Gbps 

Latency High Moderate Low 

Distance ≈ km ≤ 10 m ≈ 10 − 100 m 

Bandwidth 1 kHz − 100 kHz ≈ MHz ≤ 150 MHz 
 

Frequency Band 10 − 15 kHz 30 − 300 Hz ≈ 5 × 1014Hz 

Transmission 
Power 

> 10 W mW − W mW − W 
 

(Adapted from Kaushal & Kaddoum, IEEE Access, 2016) 



Underwater Technology Comparison  
 Acoustic: long range (km); low bandwidth (kHz); low 

efficiency (~100 bits J-1 – 10000 J bit-1)*  
 

 Radio frequency: short range (<10m); low bandwidth 
(kHz); energy efficient (~6kbits J-1  – 166 J bit-1)+   

 

 Optical wireless: short-mid range (up to 100s of m); 
high bandwidth (GHz); very energy efficient (30k bits 
J-1  – 33 J bit-1)*  

* e.g. Farr et al., OCEANS 2010 IEEE, Sydney, 24-27 May 2010; +e.g. O’Rourke et al., 
WUWNet, Los Angeles, California, 2012.  
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Underwater Optical Wireless Links 
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LOS point-to-point  LOS diffuse  

Retroreflector diffuse Non-LOS diffuse 

LOS boundary 

Configurations 



Underwater Scenarios 

Atlantic Ocean  Thames, UK  

 Laser likely  

 Longer range  

 Tracking 

 LED likely  

 Shorter range  

 Multipath 
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The Underwater Channel 
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Photosynthetic life 

Light too faint to support 

photosynthesis 

No light passes 

Coastal Oceanic 

Ocean Zones 



Jerlov Water Types 
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Water types divided into two categories:  

oceanic (blue water) with 3 subdivisions  

Type I: extremely pure ocean water 

Type II: tropical-subtropical water 

Type III: mid-latitude water 

 

coastal (littoral zone) subdivided into nine types  

Type 1 – least turbid 

… 

Type 9 – most turbid 
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Transmittance of Water Types 

Jerlov, 1976 



Channel Variation  
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Image: Google Earth (accessed 03/03/13) 

1  

2  

3  



Absorption Variation  

24 



Transmission Window  
Electromagnetic attenuation in water  
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Adapted from http://www1.lsbu.ac.uk/water/water_vibrational_spectrum.html 



Light Sources: Lasers 
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Type  Wavelength  Advantages  Disadvantages  

Argon-ion  455-529 nm  High output  - Low efficiency; needs high 
input power; needs cooling 

Nd:YAG  532 nm (green)  
473 nm (blue)  

Very high output 
power; long life time; 
compact  

Variable efficiency; costly; can 
be hard to modulate  

Ti: Sapphire  455 nm  Ultra fast output; 
tunable  

Costly; sensitive to vibrations  

Metal vapour  441.6 nm, 570 nm and 578 nm  High power; long life 
time  

Requires cooling  

Dye   450 nm - 530 nm  Very high power ; 
tunable; high data rate 

Costly; requires cooling 
arrangements  

Semiconductor 405 nm & 450 - 470 nm (InGaN) 
375 nm to 473 nm (GaN)  

Highly efficient; 
compact  

Costly; easily damaged due to 
over current  

(Adapted from Kaushal & Kaddoum, IEEE Access, 2016) 



Light Sources: LEDs 
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Manufacturer  Wavelength (nm)  Luminous Flux (Im)  

Lamina Atlas NT-42C1-0484  460 - 470  63  

AOP LED Corp PU-5WAS  455 - 475  54  

Kingbright AAD1-

9090QB11ZC/3  
460  35.7  

Ligitek LGLB-313E  460 - 475  30.6  

Toshiba TL12B01(T30)  460  6  

Lumex SML-LX1610USBC  470  5  

(Adapted from Kaushal & Kaddoum, IEEE Access, 2016) 



Channel Modelling 

Beer’s Law: At a depth 𝑧 and a wavelength , the optical 

path loss as a function of distance 𝐿 may be approximated 

by: 𝑒−𝑐 𝜆,𝑧 𝐿 
 
The attenuation coefficient is made up of: 
                       𝑐 𝜆, 𝑧      =        𝑎 𝜆, 𝑧  +            𝑏 𝜆  
 

Attenuation  = absorption + scattering 

Typical Ballpark Values 

Water type 𝑎 𝑚−1  𝑏 𝑚−1  

Clean water  0.114 0.037   

Turbid water 0.226 1.824 
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Optically Significant Components of 
Aquatic Media 
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Channel Variation 
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Channel Variation 
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Attenuation from Components 
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Pure water                  Phytoplankton                 CDOM* 

*colour dissolved organic 
material -dead & 
decaying organic matter 



Scattering 
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Process causing changes in the direction of electromagnetic 
energy in an optical beam due to localised nonuniformities 
- from different particles within the medium 
- medium state variations resulting in varying refractive index 



Scattering 
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Pure seawater and particulate scattering spectra, where 

small particles are defined as having a diameter < 1 µm. 

(data from Haltrin, 1999) 



Modelling Scattering 
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Define volume 

scattering function 

(VSF), 𝛽 𝜃, 𝜆  to 

describe angular 

distribution of scattered 

light to the incident 

irradiance per unit 

volume.  
For unpolarised incident light and isotropic water, 

the scattering becomes angular dependent and 

VSF for an angle θ into a solid angle ∆Ω is: 

 

𝛽 𝜃, 𝜆 = lim
∆𝑟→0

lim
∆Ω→0

∆𝐵 𝜃, 𝜆

∆𝑟∆Ω
 

Inherent optical property geometry (Mobley, 1994) 



Modelling Scattering 
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Alternatively, use the angle between the direction vector 

of the incoming light 𝐧 and the direction vector of the 

scattered light 𝒏′ and relate it to scattering phase 

function 𝛽 𝒓, 𝜃  (that describes the angular distribution of 

the scattered photons) by β 𝐫, 𝐧, 𝐧′ = 𝑏𝛽 𝒓, 𝜃 , where θ 

is defined as the scattering angle between 𝒏 and 𝒏′, i.e. 

𝒏. 𝒏′ = cos 𝜃. 

 

Form of 𝛽 𝒓, 𝜃  is a subject of ongoing work, the 

historical versions such as Henyey-Greenstein (HG) are 

old and not up to the job. 



3D Simulation Model 
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𝑦
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Cross-section through output 



3D Model: Scattering Effect 
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Impact of Link Orientation 
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Link Orientation: Why it Matters 
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Link Orientation: Causes of Variation 
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attenuation coefficient refractive index  

dissolved and 
particulate 
substances  

temperature 
salinity 
pressure  



Attenuation Variation 

Simulation of 200m links from a fixed starting position with 
average attenuation for each angle recorded  
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attenuation coefficient (m-1)  



Attenuation Variation 

Attenuation with depth is 

found using bio-optical 

models of phytoplankton 

with depth and relations 

between constituent  

concentrations  
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attenuation coefficient (m-1)  

Johnson, Green and Leeson, App. Opt. 52(33), 2013  

0            0.1         0.2  



Attenuation Variation 

Johnson, Green and Leeson, App. Opt. 52(33), 2013  

Specific case for 
illustration 
purposes Type “S3” 
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Absorption with Depth 
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Maximum Link Distance 
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Attenuation Variation  
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100 m, minimum attenuation  

52 m, surface attenuation  

Significant implications for link distance.  

For example, the distances become...  

42 m, average attenuation  

27 m, peak attenuation  



Practical Attenuation Variation 

Measured data are shown by 
the circles with a MATLAB fit 
(solid line) 

“The murky depths!” 
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Practical Link Distance Prediction 
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Optimal Transmission Wavelengths  

Increasing surface turbidity  

0 m  

530 nm  

250 m  

500 m  

490 nm  

430 nm  
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Refractive Index Variation  

Changes grouped by scale  

 Small scale, scattering  

 Medium scale, turbulence  

 Large scale, global gradients  

Causes 

 Salinity, pressure, temperature, 

density  
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Refractive Index Variation 
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Refractive index gradients 

found  using data 

available for research 

using an algorithm which 

calculates refractive 

indices, based on the 

values of temperature, 

wavelength, salinity and  

pressure  



Refractive Index Variation 
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Ray tracing used to plot 200m link paths, which had 

different starting angles and depths, and measure size 

of the deviation created by refraction  

magnitude of deviation (m)  

 



Refractive Index Variation 
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Significance of the findings significant depends on 

beam angle, transmitter FOV, the magnitude of 

deviation (m) and the amount of scattering in the 

link 



A Fuller Treatment 
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We have to employ the Radiative Transfer Equation (RTE) 

No analytical solutions for useful scenarios 

 

Approximate analytical solutions possible for transmitter field 

of view (FOV) less than 10° but loses the temporal 

information as scattered and non-scattered photons are 

considered to travel the same distance in the same time.  

 

Numerical solutions – Monte Carlo 

1

𝜈
 
𝜕

𝜕t
+ 𝐧 . 𝛁𝐫 I t, 𝐫, 𝐧 =   β 𝐫, 𝐧, 𝐧′ I t, 𝐫, 𝐧′ d𝐧′

4π

− cI t, 𝐫, 𝐧 +  E t, 𝐫, 𝐧  



FOV Simulation: Diffuse LOS Link  
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Jasman, Green and Leeson, Microwave and Optical 

Technology Letters, 59(4) 837-840, 2017. 



FOV Simulation: Power Distribution  
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FOV Simulation: Frequency Response 
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Clear water Turbid water 



FOV Simulation: Frequency Response 
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On the same scale – much reduced in turbid water 



Practical Work 
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Transmission of data using IRDA protocol 8 

Mbps  



Some Practical Results 

61 

Multiple hop arrangement 



Diversity 

62 

UOWC Multiple Input Multiple Output (MIMO) transmission 

through turbulence 



Diversity: Outage Performance 

Gamma-Gamma turbulence 
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Hybrid System 
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Han et al., China Communications, 11(5), 49–59, 2014 



Hybrid Systems 

Work needed on implementing protocols and functions 

in FPGAs or similar 
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Latest Comparison 
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Muth, Laser Focus World, 53(5), 2017 



Conclusions 
The incumbent technologies have major limitations 

Optical wireless shows promise underwater 

Visible light is essential 

Understanding of water properties needed 

Link orientation is important  

High bit rates are possible in  

– clearer water or 

– over short distances 

There are many subtleties in absorption and 
refraction 
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Future Directions 
Improved channel modelling 

Coding and error correction 

Modulation methods 

Improved practical arrangement 

Receiver enhancements 

– Optical preamplifiers 

– More on Coherent transmission 
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Questions 

Thank you for your attention. 
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