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Neonatal diseases
Seizures

Involuntary contractions of one or more muscle groups due to a paroxysmal
neuronal discharge
Age-dependent phenomena and symptoms of malfunctioning of the central
nervous system
Incidence: 2.6‰ for overall newborns, 11.1‰ for preterm neonates and
13.5‰ for underweight preterm neonates
Four main categories: subtle, tonic, clonic and myoclonic

Respiration diseases

Interruptions of the respiratory airflow
Significant if longer than 20 s, or only 10 s if associated with other
signs/symptoms (oxygen desaturation in the arterial blood, or hypoxemia)
Different types: central, obstructive and mixed.
Associated with life-threatening disorders or congenital diseases
Incidence: 2.3% of hospitalized infants, and 0.5%–0.6% of all newborns
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Systems for patient monitoring

Seizures and nervous system
diseases:

Based on EEG, ECG and EMG
systems

Respiration and apnea events:

Measure the Respiratory Rate
(RR)
Based on chest/abdomen elastic
belts or nasal flow meter

Both require prolonged monitoring and
specialized medical staff

Challenge

Devise wire-free, non-invasive,
low-cost monitoring systems

Sleep Apnea Guide (2016), The polysomnogram test [Online].

These devices are expensive and
moderately invasive
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Contactless RR monitoring

Microwave radar sensors

Fiber optic sensors (e.g.,
integrated in “smart bed”)

Networks of wireless sensors
(e.g., WSNs around the patient)

Wearable devices and
smart-watches (e.g., smart
sensors or clothing)

Possible solution

Video processing-based techniques
for monitoring of respiration

movements.

D. Dei et al., “Non-contact detection of breathing using a
microwave sensor,” Sensors (MDPI), 2009.

V. Mishra and N. Singh, “Optical fiber gratings in
perspective of their applications in biomedicine,”

Biomedicine, InTech, 2012.
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Video-processing based methods

Video-processing algorithms to
detect specific movements or to
estimate the RR of the framed
subject

Monitoring the patient with one
or more digital cameras

Possibility to use the system in
hospital or in domestic
environments

Video material obtained in the
Neonatal Intensive Care Unit of
the University Hospital of Parma
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Early work

N. B. Karayiannis et al.: pioneering work on the subject of seizure
detection and analysis of newborns’ movements by video cameras

Based on motion tracking of the limbs (e.g., optical flow, block
motion models, template matching)
Use of neural networks (NNs) for event detection and motion
classification (different types of seizures)
Analysis of the motion strength and motor activity signals
Focused only on neonatal seizures
Methods involving optical flow, block matching and NNs may
require algorithms for features extraction, learning and
computationally inefficient systems

Epilepsia (Wiley) 2006
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Analysis of the motion strength and motor activity signals
Focused only on neonatal seizures
Methods involving optical flow, block matching and NNs may
require algorithms for features extraction, learning and
computationally inefficient systems

Need for fast, straightforward and reliable algorithms for
real-time analysis of newborns’ movements to promptly detect

possible disorders
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Motion information extraction (1/2)

(a) gray-scale (b) DoF (c) binarization (d) erosion

Process video frames: four steps (gray-scale, DoF, binarization, erosion). This
highlights the body parts affected by motion

Project the 2D signal into 1D by spatial averaging to significantly reduce
complexity

Extract a signal representing the movement “pattern” of the involved body parts
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Motion information extraction (2/2)

Seizures are characterized by specific movements of limbs or
body parts

Clonic seizures: periodic movements with a repetition time
between 0.5–2.5 s

Example of clonic seizure in a newborn
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Motion information extraction (2/2)
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Detection of clonic seizures (1/2)

Clonic seizures detection by periodicity analysis
Model of periodicity in the motion signal L̄[n]:

L̄[n] = c+A cos (2πf0nTs + φ) + w[n] (1)

Maximum-Likelihood (ML) approach for estimation of the vector of
parameters θ = [A, f0, φ]

Fundamental frequency estimation becomes:

f̂0 = arg max
f

∣∣∣∣∣
N−1∑
n=0

L̄[n]e−j2πfnTs

∣∣∣∣∣
2

(2)

Amplitude estimation: Â = 2
N

∣∣∣∑N−1
n=0 L̄[n]e−j2πf̂0nTs

∣∣∣
Absence/presence seizures threshold: NÂ2 > η
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Detection of clonic seizures (2/2)

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

Frame

A
v
e
ra

g
e
 l
u
m

in
a
n
c
e
 s

ig
n
a
l

Periodic motion signal example
Periodogram

Riccardo Raheli (University of Parma) IARIA – MMEDIA 2017 Venice (IT), Apr. 23th , 2017 11 / 51



Performance in seizures detection

Detection system is investigated considering a binary test :

Sensitivity: α = nTP

nTP+nFN
; Specificty: β = nTN

nTN+nFP

Receiver Operating Characteristic (ROC)

Processing with temporal windows NTs = 10 s, with 50%
interlacing factor

Performance evaluation on 10 video samples of 5 min duration
with resolution 360× 288 pixels, recorded at 25 Hz

Real Positive Real Negative

Positive test nTP = 51 nFP = 16

Negative test nFN = 7 nTN = 210

Performance α = 0.88 β = 0.93

Table: Detection of clonic seizures (one B&W camera).
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Extension to multiple sensors (1/2)

Performance in seizure detection can be improved employing
multiple sensors

Multi-camera systems can see movements that may be covered
for a single camera

Extension of the periodicity model for S sensors

L̄s[n] = cs +As cos (2πf0nTs + φs) + ws[n] s ∈ {1, 2, . . . , S} (3)

Data fusion for periodicity estimation

f̂0 = arg max
f

S∑
s=1

∣∣∣∣∣
N−1∑
n=0

L̄s[n]e−j2πfnTs

∣∣∣∣∣
2

(4)

A significant periodic component is declared if a threshold η is
exceeded according to N

S

∑S
s=1 Â

2 > η
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Extension to multiple sensors (2/2)

Covered movements can be detected by camera sensors with
different viewpoints
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Performance with multi-cam

Processing with temporal windows NTs = 10 s, with 50%
interlacing factor

Performance evaluation on 4 video samples of 1 min duration with
resolution 360× 288 pixels, recorded at 25 Hz

Real Positive Real Negative

Positive test nTP = 50 nFP = 9

Negative test nFN = 7 nTN = 218

Performance α = 0.88 β = 0.96

Table: Detection of clonic seizures (3 RGB
cameras).

Better performance by increasing the number of sensors involved

Riccardo Raheli (University of Parma) IARIA – MMEDIA 2017 Venice (IT), Apr. 23th , 2017 15 / 51



Application of depth sensor

Depth information can be used to improve the ability of a standard
video-based system to distinguish pathological movements from:

1 background noise
2 random movements not concerning the framed patient

Performance evaluation on 2
video samples of 10 min duration
with resolution 640× 480 pixels,
recorded at 30 Hz

Issues: shadowing noise

Real Positive Real Negative

Positive test nTP = 138 nFP = 10

Negative test nFN = 12 nTN = 78

Performance α = 0.92 β = 0.88

Table: Detection of clonic seizures (1 camera +
depth sensor [S = 2]).
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Tracking of movements

Selection of a part of the
body to track (e.g. limbs)

Feature selection as Most
Interesting Motion Point
(MIMP) by optical flow
analysis

Trajectories extraction by
features tracking with
template matching

Similarity measure: Mean
Absolute Difference (MAD)
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Issues on motion information extraction

Extraction of a signal which describes the amount of breathing
movement in a video recorded by an RGB camera

The algorithm employed for large movements is inefficient
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Difficulty in the extraction of a reliable motion signal for small
movements, such as the ones related to respiration
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Subtle motion magnification
Eulerian Video Magnification (EVM):1

1 frame decomposition by Laplacian pyramid {P0, . . . ,PL−1}
2 pixel-wise temporal filtering {Υ0, . . . ,ΥL−1}
3 variable gain amplification {α0, . . . , αL−1}
4 video frame reconstruction

Application of the motion extraction algorithm after the EVM
processing

ML approach:

{
L̄[n] = c+ cos(2πf0Tsn+ φ) + w[n]

f̂0 = arg maxf ‖DFT
{
L̄[n]

}
‖2

1Wu, Rubinstein, Shih, Guttag, Durand, Freeman, “Eulerian video magnification for revealing
subtle changes in the world,” ACM. Trans. Graph., vol. 31, no. 4, pp. 65:1–65:8, July 2012.
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Performance in apnea detection2

Applied on video recordings framing newborns for performance
evaluation in the detection of apnea events
Analysis of the signal L̄[n] is performed on half-interlaced
windows with a time duration of NTs = 20 s
Results are reported in terms of sensitivity (α) and specificity (β),
where:

α =
TTP

TTP + TFN
β =

TTN

TTN + TFP
(5)

Performance in apnea detection

case DA TTP TTN TFP TFN α β

worst 13 1200 1800 500 140 0.90 0.78

best 17 1340 1920 380 0 1.00 0.83

Legend: DA=number of Detected Apneas; TTP, TTN, TTP, TFN (s).

2This algorithm is referred to as Motion Magnification for Apnea Detection (MMAD).
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Drawbacks (1/2)

EVM is employed as a pre-processing system⇒ video is
processed two times

The method for the extraction of motion signal is highly inefficient
for periodical breathing movements:

1 DoF⇒ high-pass FIR filter with H(f) = 1− e−j2πf
2 breathing frequencies of a newborn at rest⇒ 18 – 60 bpm
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Drawbacks (2/2)

EVM is employed as a pre-processing system⇒ video is
processed two times

Integration of EVM with motion analysis algorithm.

Solutions

Integration of the EVM
algorithm with the motion
signal extraction algorithm
Use of appropriate digital
filters
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Spatio-temporal RR estimation3

Avoid to use the DoF filter in the extraction of L̄[n]⇒ employ the
temporal filters of the EVM

Avoid to reconstruct the overall pyramid for frame reconstruction
⇒ employ the pyramidal levels

Frames processing for motion information extraction on pyramidal
levels⇒ data fusion for RR estimation

3This algorithm is referred to as Spatio-Temporal video processing for RR estimation (STRE).
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Performance in RR estimation

RR estimated from
{
L̄`
}L−1

`=0
signals (employed for data fusion) are

compared with rates estimated from pneumogram.

According to medical practice, a tolerance of ±15% is considered.

Example n.1
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Exploiting pixel-wise variations

Periodic pixel-wise variations can be exploited to analyze
spatio-temporal movements of the framed patient

Pixel-wise variations can be modeled as

X[n] = C + A cos(2πf0Tsn+ Φ) + W[n] (6)

ML approach to estimate the vector of parameters θ = [av, f0,φv]
(where sv [n] = vec (S [n]))
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Pixel-wise ML approach

The likelihood function becomes:

J (θ) =

M1M2−1∑
p=0

N−1∑
n=0

[xv[p, n]− av[n] cos (2πf0Tsn+ φv[p])]2 (7)

Estimation of the fundamental frequency:

f̂0 =
fs
N

arg max
kmin≤k≤kmax

M1M2−1∑
p=0

∣∣∣∣∣
N−1∑
n=0

xv[p, n]e−j2π
k
N
n

∣∣∣∣∣
2

(8)

Pixel-wise amplitudes may be estimated as:

âv[p] =
2

N

∣∣∣∣∣
N−1∑
n=0

xv[p, n]e−j2πf̂0Tsn

∣∣∣∣∣ (9)

The ML approach can be both used to estimate the RR of the
framed patient and select areas, inside the video frames, mainly
affected by respiratory movements

Riccardo Raheli (University of Parma) IARIA – MMEDIA 2017 Venice (IT), Apr. 23th , 2017 26 / 51



Pixel-wise ML video processing (1/2)

Analysis of pixel-wise variations related to respiratory movements
and estimate the RR of the framed patient:

Selection of R areas (Regions Of Interest, ROI) involved in
respiratory movements only
Large motion detection on ROI, which can compromise
performance in the estimation of RR
Data fusion on multiple ROI to reinforce and improve RR estimation
Estimation is performed on temporal windows of NTs seconds
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Pixel-wise ML video processing (2/2)
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Pixel-wise ML video processing (2/2)

The ML approach is applied to ROI, to reinforce estimation and
avoid the interference of large movements
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Pixel-wise ML video processing (2/2)

The ML approach is applied to ROI, to reinforce estimation and
avoid the interference of large movements
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Analysis of pixel variations

The pixel-wise ML approach exploits temporal periodicity of pixels
involved in respiratory movements

Example

Small movements near the throat
can be also used to estimate
the RR
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Examples of RR estimation

The algorithm can estimate the RR over time, monitoring
continuously the framed patient

Riccardo Raheli (University of Parma) IARIA – MMEDIA 2017 Venice (IT), Apr. 23th , 2017 30 / 51



Performance analysis

The pixel-wise ML algorithm is compared with the “gold-standard”
pneumogram and the STRE algorithm

Tests for the whole video and using a number of ROI R = 4
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Example n.1
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Analysis and design of RR estimators

A non-trivial problem: the lack of databases of video recordings
properly matched with reliable medical data:

apnea events may be rare (CCHS or other syndromes)
long records with simultaneous RR measurements and video
streams may not be readily available

Detection and measurement algorithms must be designed, tested
and reliable

Statistical models of RR patterns and of respiratory pauses/apnea events

Two models:

respiratory pauses/apnea events
complete RR patterns

Continuous-Time Markov Chains
(CTMC)-based statistical models

Simulators:

software-based
hardware-based

In-depth tests of developed video
processing-based algorithms
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Model of apnea episodes

Apnea is defined as an absence of respiration of at least 20 s, or
10 s if associated with other symptoms

Apnea events can be related to severe dysfunctions (Obstruction
Sleep Apnea Syndrome [OSAS] or congenital diseases as
Congenital Central Hypoventilation Syndrome [CCHS])

Event based statistical model: two-state Markov chain
S0 = {apnea event} S1 = {regular breathing}
bi = {duration of apnea} ai = {duration of regular breathing}
model parameters: bi ∼ exp(µ), ai ∼ exp(ν)
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Model of breathing patterns

RR of a newborn (at rest): 0.3–1.1 Hz (18–66 bpm)

The two-state model is extended to N state, where each state
{Sn}N−1

n=0 represents the RR {%n}N−1
n=0 and the order

%0 < . . . < %N−1 is assumed

States {Sn}N−1
n=0 are properly assigned depending on the presence

of apnea events and large random movements

The CTMC model is characterized by the inter-arrival times
τ` ∼ exp(µn) and from the infinitesimal generator matrix Λ
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Estimation of model parameters

Two-state model
The mean duration of apnea events and of regular breathing can
be estimated from clinical evaluations or pneumographic signals

Average values may be set as: E{ai} = 1/ν, E{bi} = 1/µ

Parameters of the CTMC model are simply estimated

Extended N -state model
Real RR are estimated from recorded pneumographic signals

Rates {%n}N−1
n=0 are selected by Lloyd-Max4 quantization to N

levels

Transition rates and infinitesimal generator matrix are obtained by
ML estimator: Λ̂, where λ̂m,n =

Nm,n(T )
Rn(T ) ≥ 0

4S. Lloyd, “Least squares quantization in PCM”, IEEE Trans. Inf. Theory, vol. 28, no. 2, 1982
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Estimation of model parameters
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Simulators

Software-based simulator

Interpolation and decimation of
video frames in order to
accelerate or slow down
breathing movements

Noise compensation algorithm
to maintain background noise

Hardware-based simulator

Able to replicate breathing
movements of the chest

Based on Arduino UNO board
to drive the DC step motor
which move part of the chest
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Simulation of apnea events
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Simulation of breathing patterns
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Performance by simulated patterns
Performance for the detection of apnea events with two
algorithms: MMAD and STRE

Performance is measured in terms of:
Receiver Operating Characteristics (ROC)
sensitivity (α) and specificity (β)

Area Under Curve (AUC)
Diagnostic Odds Ratio ∆ = α

1−α ·
β

1−β

(a) performance for
software-based
simulator

(b) performance for
hardware-based
simulator
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Performance for the detection of apnea events with two
algorithms: MMAD and STRE

Performance is measured in terms of:
Receiver Operating Characteristics (ROC)
sensitivity (α) and specificity (β)

Area Under Curve (AUC)
Diagnostic Odds Ratio ∆ = α

1−α ·
β

1−β

(a) performance for
software-based
simulator

(b) performance for
hardware-based
simulator

Algorithm α β ∆

MMAD 0.888 0.829 38.4
STRE 0.91 0.869 67.1

(a) Detection performance for software-based simulator.

Algorithm α β ∆

MMAD 0.951 0.787 71.7
STRE 0.923 0.896 103.3

(b) Detection performance for hardware-based simulator.
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Hardware simulation of seizure events

Clonic seizures

Tonic seizures
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Outline

1 Introduction

2 Detection of seizures

3 Monitoring of respiration and its disorders

4 Simulators of neonatal disorders

5 Mobile application: smartCED

6 Conclusion
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SmartCED

Android application for neonatal seizures detection
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SmartCED app

Laboratory test with seizure simulator.
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SmartCED app: ROI selection
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SmartCED app: multiple sights
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SmartCED app: crisis database

Count the number of
epileptic crises

Save starting and ending
time of the detected event

Display the duration of
each single event

Show the city where the
event is detected
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SmartCED app: geo-localization
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Conclusions

Algorithms for remote monitoring of newborns
Periodicity analysis applied to the detection of seizures, apneas
and monitoring of RR
Statistical models of apneas and breathing patterns based on
CTMCs useful to devise simulators
Development of software- and hardware-based simulators
to test video processing-based algorithms
Mobile Android APP for neonatal seizure detection

Future work

Extension to other vital signs (e.g. heart rate)
Development of portable contactless devices to monitor patient on
single-board computers
Improvement of the statistical models by taking into account other
conditions
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Multimedia material

Video multimedia support for the article “Markov chain
modeling and simulation of breathing patterns,” in Biomedical
Signal Processing and Control.
DOI: 10.1016/j.bspc.2016.12.002. Direct link.
Video multimedia support for the article “Monitoring infants by
automatic video processing: A unified approach to motion
analysis,” in Computers in Biology and Medicine.
DOI: 10.1016/j.compbiomed.2016.11.010. Direct link.
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Thank you for your attention!
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