COLLA 2018

Validation of a New Component into an Existing Distributed System Introduction George Blankenship 24 June 2018 16:15 – 18:45

George Blankenship

• Academics

- BS Georgetown university (mathematics)
- MS Marymount (computer science)
- DSC work at GWU (computer science)
- 40+ years in computer industry
 - Protocol design
 - TCP/IP implementation manager
 - Distributed system project manager
 - Systems programmer and consultant

Outline of Tutorial

- Introduction
- Collaboration
- Mature Distributed System
- Addition of a New System
- System Development Life Cycle
- Validation of a New System Requirements
- Validation of a New System
- Validation Demonstration
- Lessons Learned

Objective of Tutorial

- Explore the integration of a new component into an existing mature processing environment
- The objective the new component is to introduce a new capability desired by the end users
- The approach would also be appropriate for an update to an existing component
- The approach assumption is that the existing componentry is stable and reliable

Outline of the Tutorial

- Collaboration
- A complex mature distributed system
- A new capability for the system
- SDLC overview
- Requirements validation
- Target system validation
- Validation software
- Lessons learned

Rationale for the Discussion

- My experience has been focused on projected performance of a large distributed system
 - Apollo lunar landing program
 - Skylab program
 - Weather system upgrade program
 - Encrypted messaging
 - ARPANET migration to the Internet (informal organization)
 - GOSIP (national validation laboratories)
- Common thread is validation is based upon proper transmission
- Is this approach proper?

What is Collaboration?

- Definition
- Major components
 - Messages
 - Engines
- Human collaboration
- System Collaboration

Definition of Collaboration

- Cooperative environment where two (or more) entities work to a common goal
- The key item for a successful collaboration is a clear definition of the environment
 - The objective
 - The work items
 - The exchange of work items

Major Elements of Collaboration

- The messages are the encapsulation objects for the movement of the work items
- The actual path used by the entities is shared by each entity, but is independent of the collaboration objective
 - Voice or an electronic transmission
 - Common encoding for all entities
 - Common approach for message movement

Collaboration Engine Components

- The engines are the entities that consume the work items
- The message encoding used is shared by all entities, but is independent of the collaboration objective
 - Message items follow a standard encoding
 - Message items must have a clear definition
 - Message item must have a clear context

Human Collaboration

- The message engine in a human collaboration is the human being
- The message encoding is based upon language (vocabulary and grammar)
- The human being recognizes the message content
 - Information for a decision (future or immediate)
 - Request for information
- Example is text message conversation

System Collaboration

- The message engine in the collaboration of systems is an application program
- The message encoding is based upon a recognized standard (syntax and semantics)
- The application recognizes the message content – Write request to a database
 - Read request (simple read or complex computation)
- Example is an eCommerce interaction

A Mature Distributed System

- Department of Veterans Affairs
- Second largest agency of the US federal government
- Objective: to fulfill President Lincoln's promise "*To care for him who shall have borne the battle, and for his widow, and his orphan*" by serving and honoring the men and women who are America's veterans.

Health System

- The Veterans Health Administration (VHA) is the largest integrated health care system in the United States
- More than 1,240 sites of care
 - 170 medical centers,
 - 1061 ambulatory care and community-based outpatient clinics
- More than 9 million people receive care (2018)
- Components of Interest
 - VistA (medical center)
 - MPI/MVI (patient identify)
 - HDR (clinical information
 - VSSC (outcomes analysis)

Mature Distributed System George Blankenship

VistA

- Veterans Information Systems and Technology Architecture (VISTA)
 - nationwide information system
 - Electronic Health Record (EHR)
 - developed by the U.S. Department of Veterans Affairs
- EHR system for a hospital system and its dependent work locations
- The hospital VistA complex must be able to support patient care when isolated

MPI/MVI

- Master Patient Index
- (additionally Master Veteran Index)
- Authoritative location of patient identity and selected other metadata information
- System register with the MPI for patient metadata information updates

HDR

- Health Data Repository
- Record of Veterans clinical data
- Display clinical data from VistA systems
- Prescriptions
- Vital signs

VSSC

- VHA Support Service Center Capital Assets
- Data warehouse
- Primary function of clinical interest is outcomes analysis

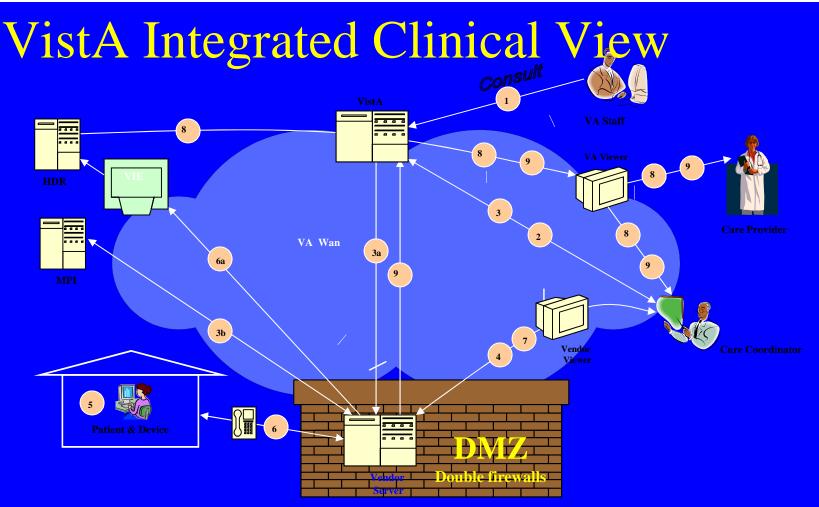
Objective of the New System

- Home Telehealth Program
- Support a large number of patients
- Remote monitoring of patient
- Care directed by Disease Management Protocol (DMP) with vital sign capture and video sent to a triage system
- Clinician uses collected data to closely monitor patient without bringing them to the hospital
- Benefits
 - Better level health with fewer emergencies
 - Happier patients
 - Lower costs

Addition of a New System

George Blankenship

Description of the System


- Medical collection devices supplied to patient
 - Home device
 - Interactive Voice Response (IVR)
 - Independent mobile system (tablet, smart phone, ...)
 - Internet connected
- Triage system
 - Receives data from collection devices
 - Performs a required care analysis based upon DMP
 - Clinical desktop supplies a ranking of care importance
- System creates a data island
- System is not accessible by CPRS (VistA GUI)

Addition of a New System

George Blankenship

Integration Objective

- Eliminate the data island through integration with VA systems
- Patient identity is slaved to the MPI
- Patient data is placed in VistA and HDR databases using VA format definition
- CPRS user is able to access patient data

- 1. VA staff requests patient be considered for enrollment by sending VistA consult.
- 2. Care Coordinator completes the VistA consult action:
- 3. Care Coordinator initiates registration of patient from Home Telehealth service using VistA
 - a) VistA sends HL7 sign-up message with patient identification to vendor system.
 - b) Vendor subscribes for MPI updates.
- 4. Care Coordinator links device with patient record and arranges to have device installed in the patient's home.
- 5. The patient uses the in-home device to capture vital signs and respond to any questions
- 6. Device exchanges information with vendor server, normally once per day
- a) Vendor sends measurement data to the Health Data Repository (HDR) via the Interface Engine using HL7.
- 7. Using Vendor Viewer, Care Coordinator logs into vendor system to review patient information.
- 8. Care Provider and Care Coordinator can review Home Telehealth and VistA information in VA Viewer (CPRS and VistAWeb).
- 9. Vendor server sends draft Monthly Progress Notes to facility VistA server.

Addition of a New

George Blankenship

System

22

System Development Life Cycle

- Birth and Death of a System (SDLC Phases)
- (Phase I) Requirement gathering and analysis
- (Phase II) Design
- (Phase III) Implementation or coding
- (Phase IV) Testing
- (Phase V) Deployment
- (Phase VI) Maintenance

Integration Activity

- Basic objective is that the new system has "all" the aspects of the existing systems
- Phase I (performed before procurement)
 - Create document defining new system operational objectives
 - Collect documents defining existing environment
- Phase II (performed before procurement)
 - Generate requirements for new system
- Phase IV (performed as part of the RFU activity)
 - Validate new system performs as expected prior to operational deployment
- Phase V (performed as part of the RFU activity)
 - Validate new system performs as expected in operational test lab
- Phase VI
 - Monitor new system performance

System Development Life Cycle George Blankenship

Items of Concern

- Basic objective is that the new system has "all" the aspects of the existing systems
- (Phase I)
 - Documentation is stale as soon as it is published
- (Phase IV)
 - Is there an existing lab?
 - Is the existing lab able to support the required testing?
- (Phase V)
 - Is there a pre-deployment lab with all existing systems?
- (Phase VI)
 - Is there group responsible for system monitoring?
 - Is the monitoring adequate?

Approach to the Concerns

- Basic objective is that the new system has "all" the aspects of the existing systems
- (Phase I)
 - Build a validation lab to validate collected documents
- (Phase IV)
 - Build a validation lab to confirm compliance
- (Phase V)
 - Build a pre-deployment lab with existing application and representative database
- (Phase VI)
 - Build a monitor to evaluate the operation of the new system

New System Requirements

- Collect the set of documents defining current environment
 - The document set is drawn from each system in the existing environment
 - The documents is relevant within the environment, but may be of little use to external systems
- Draft of requirements document for new system based upon the collected documents
 - The documents must be relevant to an external perspective
- Validation of the requirements document

Reference Engine SDLC

- (Phase I
 - Preconditions are notional concepts for an actual requirements document
- (Phase II)
 - Requirements document for reference engine
 - Validation plan for use of reference engine
- (Phase V)
 - Validation of proper response by reference engine
- (Phase VI)
 - Update of new system requirements document
 - Return to Phase II, if missing requirements are discovered

Validation of a New System Requirements George Blankenship

Validation Engine SDLC

- (Phase I)
 - Requirements document for new system are final
 - Reference engine is the basis for the validation engine
- (Phase II)
 - Design document for modifications to reference engine
 - Design of test scripts for new system validation
- (Phase V)
 - Validation of proper responses by reference engine and the validation engine
- (Phase VI)
 - Update due to VA system (existing environment) change

Validation Tests

- The validation uses a black box approach
 - Testing starts with a precondition setup in the validation engine and the SUT
 - No modification is required in the SUT
 - The SUT operates normally as if it were in a production environment
 - The validation engine uses a finite state machine (FSM) to identify that the received messages are proper
- A validation test is a set of message exchanges
 - One system will start a processing sequence (message sequence)
 - The validation engine uses a script to direct the responses to SUT messages

Validation of a New System

• Preconditions

- Validation of a New System
- Reference engine has validated the new system requirements document
- The validation test plan is complete
- Validation lab exists
- New system passed internal SDLC
 - Any problem found during a new system validation returns the system to a not RFU state
 - The new system must be **<u>RFU</u>** (by their measure) before validation

Validation Laboratory

- Internet based laboratory
 - All test sets defined
 - Reference engine is the basis for the validation engine
- (Phase II)
 - Design document for modifications to reference engine
 - Design of test scripts for new system validation
- (Phase V)
 - Validation of proper responses by reference engine and the validation engine
- (Phase VI)
 - Update due to VA system (existing environment) change

Validation Environment

- New System owner laboratory
 - System Under Test (SUT) resides in the system owner lab
 - The SUT administrator is single point of contact
- Validation laboratory
 - Validation engine emulating existing collaboration environment
 - Test conductor administers the testing
 - The validation engine generates testing results in an email to the SUT administrator

Validation Demonstration

- Testing laboratory used for the demonstration is the one used for the validation of new systems for the VA EHR environment
- **BLANKENSHIP115** supplies the **SUT**
- **EITL** supplies the **validation engine**
- I am the test conductor, there is no SUT administrator
 - A test will be started that does not require an SUT setup
 - The test administrator will start the test
 - No manual intervention is required
- Upon completion, the validation engine sends an email to the SUT administrator with a summary report

Validation Demonstration George Blankenship

Lessons Learned

- Probability of an exceptional condition is non-zero.
 - A portion are the result of code defects
 - A portion are the result of defective intermediate entities
 - A portion are the result of environmental issues
 - The processing of the condition could be very interesting
- A collaborative processing distributed system must have a minimal amount of manual intervention due to delay and erroneous responses
- A distributed system must address the ability for disconnected operation
- A distributed system must address redundancy

The Take Away

- Very seldom does testing take exception conditions into account
- The norm is to expect that peer systems are reliable and operate error free
- Probability of an exceptional condition is non-zero.
 - A portion are the result of code defects
 - A portion are the result of defective intermediate entities
 - A portion are the result of environmental issues
 - The processing of the condition could be very interesting
- "In general, an implementation must be conservative in its sending behavior, and liberal in its receiving behavior."
 - Jon Postel (one of the founders of the Internet)